COMPUTER ENGINEERING AND MS IN ENGINEERING: EMBEDDED ELECTRICAL AND COMPUTER SYSTEMS SF SCHOLARS ROADMAP

The San Francisco State Scholars program provides undergraduate students with an accelerated pathway to a graduate degree. Students in this program pursue a bachelor’s and master’s degree simultaneously. This program allows students to earn graduate credit while in their junior and/or senior year, reducing the number of semesters required for completion of a master’s degree.

This roadmap is a suggested plan of study and does not replace meeting with an advisor. Please note that students may need to adjust the actual sequence of courses based on course availability. Please consult an advisor in your major program for further guidance.

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select One (Major Core):</td>
<td></td>
<td>3-5</td>
</tr>
<tr>
<td>CHEM 115</td>
<td>General Chemistry I: Essential Concepts of Chemistry</td>
<td></td>
</tr>
<tr>
<td>CHEM 180</td>
<td>Chemistry for the Energy and the Environment (B1, B3, ES)</td>
<td></td>
</tr>
<tr>
<td>ENG 114</td>
<td>Writing the First Year: Finding Your Voice (A2)</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 100</td>
<td>Introduction to Engineering (Major Core)</td>
<td>1</td>
</tr>
<tr>
<td>ENGR 121</td>
<td>Gateway to Computer Engineering (Major Core)</td>
<td>1</td>
</tr>
<tr>
<td>ENGR 212</td>
<td>Introduction to Unix and Linux for Engineers (Major Core)</td>
<td>2</td>
</tr>
<tr>
<td>MATH 226</td>
<td>Calculus I (Major Core, B4)</td>
<td>4</td>
</tr>
<tr>
<td>GE Area A: Oral Communication (A1)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Spring Semester</td>
<td></td>
<td>17-19</td>
</tr>
<tr>
<td>ENGR 213</td>
<td>Introduction to C Programming for Engineers (Major Core)</td>
<td>3</td>
</tr>
<tr>
<td>MATH 227</td>
<td>Calculus II (Major Core)</td>
<td>4</td>
</tr>
<tr>
<td>Second Year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSC 210</td>
<td>Introduction to Computer Programming (Major Core)</td>
<td>3</td>
</tr>
<tr>
<td>MATH 228</td>
<td>Calculus III (Major Core)</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 220 & PHYS 222</td>
<td>General Physics with Calculus I and General Physics with Calculus I Laboratory (Major Core, B1, B3)</td>
<td></td>
</tr>
<tr>
<td>GE Area D</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>GE Area E</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Units</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>Spring Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSC 220</td>
<td>Data Structures (Major Core)</td>
<td>3</td>
</tr>
<tr>
<td>CSC 230</td>
<td>Discrete Mathematical Structures for Computer Science (Major Core)</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 205</td>
<td>Electric Circuits (Major Core)</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 206</td>
<td>Circuits and Instrumentation Laboratory (Major Core)</td>
<td>1</td>
</tr>
<tr>
<td>MATH 245</td>
<td>Elementary Differential Equations and Linear Algebra (Major Core)</td>
<td>3</td>
</tr>
<tr>
<td>GE Area D</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Units</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>Third Year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGR 300</td>
<td>Engineering Experimentation (Major Core)</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 301</td>
<td>Microelectronics Laboratory (Major Core)</td>
<td>1</td>
</tr>
<tr>
<td>ENGR 305</td>
<td>Linear Systems Analysis (Major Core)</td>
<td>3</td>
</tr>
</tbody>
</table>
ENGR 353 Microelectronics (Major Core) 3
ENGR 356 Digital Design (Major Core) 3
ENGR 357 Digital Design Laboratory (Major Core) 1
GE Area C 3

Spring Semester
CSC 340 Programming Methodology (Major Core) 3
ENGR 451 Digital Signal Processing (Major Core) 4
ENGR 476 Computer Communications Networks (Major Core) 3
ENGR 478 Design with Microprocessors (Major Core) 4
GE Area D 3

GE Area C 3
GE Area UD-C: Upper-Division Arts and/or Humanities (Consider SF State Studies Course) 3
GE Area UD-D: Upper-Division Social Sciences (Consider SF State Studies Course) 3

Units 17

Fifth Year

Fall Semester
ENGR 800 Engineering Communications (Graduate Core) 3

Select One:
ENGR 897 Research (if selecting Culminating Experience Option A) 3

Graduate Elective (if selecting Culminating Experience Option B) 3
Graduate Elective - Take One 3

Units 9

Spring Semester
ENGR 801 Engineering Management (Graduate Core) 3

Select One (Culminating Experience)
ENGR 895 Applied Research Project (if selecting Culminating Experience Option B) 3
ENGR 898 Master’s Thesis (if selecting Culminating Experience Option A) 3

Graduate Elective - Take One 3

Units 9

Total Units 158-160

1. ENG 114 can only be taken if you complete Directed Self-Placement (DSP) and select ENG 114; if you choose ENG 104/ENG 105 through DSP you will satisfy A2 upon successful completion of ENG 105 in the second semester; multilingual students may be advised into alternative English courses.

2. Depending on courses completed through Early Start, students in Pathway/Category III or IV may be required to enroll in a support course to complement their Quantitative Reasoning/B4 requirement. There are multiple course options for this pathway. Before enrolling in a B4 course, students should verify their MATH Pathway/Category in their Student Center (http://cms.sfsu.edu/content/student-center/). Information regarding the courses that correspond with your MATH Pathway/Category can be found on the Developmental Studies Office Website (http://developmentalstudies.sfsu.edu/).

3. To avoid taking additional units, it is recommended that you meet SF State Studies requirements (AERM, GP, ES, SJ) within your GE and major.

4. GE Area A: Critical Thinking (A3) is satisfied upon completion of ENGR 205 and either ENGR 201 or ENGR 213.

5. GE Area UD-B: Upper-Division Physical and/or Life Sciences is satisfied upon completion of ENGR 300 and either ENGR 301 or ENGR 302.
Students must complete 21 units of upper-division Engineering units before registering for ENGR 696.

Major Electives (6 units)

- CSC 415 Operating System Principles (3 units) (CSC 256 and MATH 324 are hidden prerequisites for this course)
- CSC 510 Analysis of Algorithms I (3 units) (MATH 324 is a hidden prerequisite for this course)
- CSC 645 Computer Networks (3 units) (CSC 415 is a hidden prerequisite for this course)
- CSC 648 Software Engineering (3 units)
- CSC 667 Internet Application Design and Development (3 units)
- CSC 668 Advanced Object Oriented Software Design and Development (3 units)
- ENGR 306 Electromechanical Systems (3 units)
- ENGR 350 Introduction to Engineering Electromagnetics (3 units) (PHYS 240 is a hidden prerequisite for this course)
- ENGR 446 Control Systems Laboratory (1 unit) (ENGR 447 is a hidden prerequisite for this course)
- ENGR 447 Control Systems (3 units)
- ENGR 449 Communication Systems (3 units)
- ENGR 451 Digital Signal Processing (4 units)
- ENGR 453 Digital Integrated Circuit Design (4 units)
- ENGR 454 Application Specific Integrated Circuit Design (4 units)
- ENGR 456 Computer Systems (3 units)
- ENGR 476 Computer Communications Networks (3 units)
- ENGR 478 Design with Microprocessors (4 units)
- ENGR 491 Real-time Digital Signal Processing (3 units)
- ENGR 498 Advanced Design with Microcontrollers (4 units)
- ENGR 845 Neural-Machine Interfaces: Design and Applications (3 units)
- ENGR 848 Digital VLSI Design (3 units)
- ENGR 849 Advanced Analog IC Design (3 units)
- ENGR 850 Digital Design Verification (3 units)
- ENGR 851 Advanced Microprocessor Architectures (3 units)
- ENGR 853 Advanced Topics in Computer Communication and Networks (3 units)
- ENGR 854 Wireless Data Communication Standards (3 units)
- ENGR 855 Advanced Wireless Communication Technologies (3 units)
- ENGR 856 Nanoscale Circuits and Systems (3 units)
- ENGR 868 Advanced Control Systems (3 units)
- ENGR 869 Robotics (3 units)

Graduate Engineering Electives (6-15 units)

Elective technical engineering courses are selected from the following, unless already taken to fulfill other requirements:

- ENGR 446 Control Systems Laboratory (1 unit)
- ENGR 447 Control Systems (3 units)
- ENGR 451 Digital Signal Processing (4 units)
- ENGR 453 Digital Integrated Circuit Design (4 units)
- ENGR 454 Application Specific Integrated Circuit Design (4 units)
- ENGR 456 Computer Systems (3 units)
- ENGR 476 Computer Communications Networks (3 units)
- ENGR 478 Design with Microprocessors (4 units)
- ENGR 491 Real-time Digital Signal Processing (3 units)
- ENGR 498 Advanced Design with Microcontrollers (4 units)
- ENGR 845 Neural-Machine Interfaces: Design and Applications (3 units)
- ENGR 848 Digital VLSI Design (3 units)
- ENGR 849 Advanced Analog IC Design (3 units)
- ENGR 850 Digital Design Verification (3 units)
- ENGR 851 Advanced Microprocessor Architectures (3 units)
- ENGR 853 Advanced Topics in Computer Communication and Networks (3 units)
- ENGR 854 Wireless Data Communication Standards (3 units)
- ENGR 855 Advanced Wireless Communication Technologies (3 units)
- ENGR 856 Nanoscale Circuits and Systems (3 units)
- ENGR 868 Advanced Control Systems (3 units)
- ENGR 890 RF Devices and Transceiver Principles and Design (3 units)
- ENGR 897 Research (3 units)
- ENGR 899 Independent Study (1-3 units)

Non-Engineering Electives (0-6 units)

Courses selected primarily from sciences, mathematics, social science, or business, upon approval of the graduate coordinator. Elective courses must not duplicate subjects used in satisfying the student's undergraduate degree requirement.

* The total number of units required will depend on the number of engineering electives taken, the number of non-engineering electives taken, and the culminating experience option selected.