Bachelor of Science in Computer Engineering - Quantitative Reasoning Category I/II and Stretch English

128 Total Units Required
Minimum Number of Units in Major: 94

This roadmap is a suggested plan of study and does not replace meeting with an advisor. Please note that students may need to adjust the actual sequence of courses based on course availability. Please consult an advisor in your major program for further guidance.

Course Details

First Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENG 104</td>
<td>Writing the First Year: Finding Your Voice Stretch I</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 100</td>
<td>Introduction to Engineering (Major Core)</td>
<td>1</td>
</tr>
<tr>
<td>ENGR 121</td>
<td>Gateway to Computer Engineering (Major Core)</td>
<td>1</td>
</tr>
<tr>
<td>ENGR 212</td>
<td>Introduction to Unix and Linux for Engineers (Major Core)</td>
<td>2</td>
</tr>
<tr>
<td>MATH 226</td>
<td>Calculus I (Major Core, B4)</td>
<td>4</td>
</tr>
</tbody>
</table>

| GE Area A: Oral Communication (A1) | 3 | 4 |
| GE Area D | 3 | 4 |

Units: 17

Second Semester

Select One (Major Core):

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 115</td>
<td>General Chemistry I: Essential Concepts of Chemistry</td>
<td>3-5</td>
</tr>
<tr>
<td>CHEM 180</td>
<td>Chemistry for the Energy and the Environment (B1, B3, ES)</td>
<td></td>
</tr>
<tr>
<td>ENG 105</td>
<td>Writing the First Year: Finding Your Voice Stretch II (A2)</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 213</td>
<td>Introduction to C Programming for Engineers (Major Core)</td>
<td>3</td>
</tr>
<tr>
<td>MATH 227</td>
<td>Calculus II (Major Core)</td>
<td>4</td>
</tr>
</tbody>
</table>

Units: 17

Third Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 220 & PHYS 222</td>
<td>General Physics with Calculus I and General Physics with Calculus I Laboratory (Major Core)</td>
<td>4</td>
</tr>
</tbody>
</table>

Units: 17-19

Fourth Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSC 210</td>
<td>Introduction to Computer Programming (Major Core)</td>
<td>3</td>
</tr>
<tr>
<td>MATH 228</td>
<td>Calculus III (Major Core)</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 230 & PHYS 232</td>
<td>General Physics with Calculus II and General Physics with Calculus II Laboratory (Major Core)</td>
<td>4</td>
</tr>
</tbody>
</table>

| GE Area B: Life Science (B2) | 3 |
| GE Area E | 3 |

Units: 17

Fifth Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSC 340</td>
<td>Programming Methodology (Major Core)</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 300</td>
<td>Engineering Experimentation (Major Core)</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 305</td>
<td>Linear Systems Analysis (Major Core)</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 353</td>
<td>Microelectronics (Major Core)</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 356</td>
<td>Digital Design (Major Core)</td>
<td>3</td>
</tr>
</tbody>
</table>

Units: 16
Bachelor of Science in Computer Engineering - Quantitative Reasoning
Category I/II and Stretch English

GE Area C
Units 3

Sixth Semester
ENGR 301 Microelectronics Laboratory (Major Core) 1
ENGR 357 Digital Design Laboratory (Major Core) 1
ENGR 451 Digital Signal Processing (Major Core) 4
ENGR 476 Computer Communications Networks (Major Core) 3
ENGR 478 Design with Microprocessors (Major Core) 4

GE Area C
Units 3

GE Area D
Units 3

Seventh Semester
CSC 413 Software Development (Major Core) 3
ENGR 378 Digital Systems Design (Major Core) 3
ENGR 456 Computer Systems (Major Core) 3
ENGR 696 Engineering Design Project I (Major Core) 6

GE Area C
Units 3

GE Area D
Units 3

Eighth Semester
ENGR 697GW Engineering Design Project II - GWAR (Major Core) 2

Major Upper-Division Electives - Take Two 7
GE Area UD-C: Upper-Division Arts and/or Humanities (Consider SF State Studies Course) 3
GE Area UD-D: Upper-Division Social Sciences (Consider SF State Studies Course) 3

Units 16

Total Units 131-133

1 ENG 114 can only be taken if you complete Directed Self-Placement (DSP) and select ENG 114; if you choose ENG 104/ENG 105 through DSP you will satisfy A2 upon successful completion of ENG 105 in the second semester; multilingual students may be advised into alternative English courses.

2 Depending on courses completed through Early Start, students in Pathway/Category III or IV may be required to enroll in a support course to complement their Quantitative Reasoning/B4 requirement. There are multiple course options for this pathway. Before enrolling in a B4 course, students should verify their MATH Pathway/Category in their Student Center (http://cms.sfsu.edu/content/student-center/). Information regarding the courses that correspond with your MATH Pathway/Category can be found on the Developmental Studies Office Website (http://developmentalstudies.sfsu.edu/).

3 To avoid taking additional units, it is recommended that you meet SF State Studies requirements (AERM, GP, ES, SJ) within your GE and major.

4 GE Area A: Critical Thinking (A3) is satisfied upon completion of ENGR 205 and ENGR 201 or ENGR 213.

5 GE Area UD-B: Upper-Division Physical and/or Life Sciences is satisfied upon completion of ENGR 300 and either ENGR 301 or ENGR 302.

6 Students must complete 21 units of upper-division Engineering units before registering for ENGR 696.

7 Major Electives (6 units)
CSC 415 Operating System Principles (3 units) (CSC 256 and MATH 324 are hidden prerequisites for this course)
CSC 510 Analysis of Algorithms I (3 units) (MATH 324 is a hidden prerequisite for this course)
CSC 645 Computer Networks (3 units) (CSC 415 is a hidden prerequisite for this course)
CSC 648 Software Engineering (3 units)
CSC 667 Internet Application Design and Development (3 units)
CSC 668 Advanced Object Oriented Software Design and Development (3 units)
ENGR 306 Electromechanical Systems (3 units)
ENGR 350 Introduction to Engineering Electromagnetics (3 units) (PHYS 240 is a hidden prerequisite for this course)
ENGR 442 Operational Amplifier Systems Design (3 units)
ENGR 446 Control Systems Laboratory (1 units) (ENGR 447 is a hidden prerequisite for this course)
ENGR 447 Control Systems (3 units)
ENGR 449 Communication Systems (3 units)
ENGR 453 Digital Integrated Circuit Design (4 units)
ENGR 454 Application Specific Integrated Circuit Design (4 units)
ENGR 610 Engineering Cost Analysis (3 units)
ENGR 844 Embedded Systems (3 units)
ENGR 848 Digital VLSI Design (3 units)
ENGR 849 Advanced Analog IC Design (3 units)
ENGR 851 Advanced Microprocessor Architectures (3 units)
ENGR 852 Advanced Digital Design (3 units)
ENGR 853 Advanced Topics in Computer Communication and Networks (3 units)
ENGR 854 Wireless Data Communication Standards (3 units)
ENGR 856 Nanoscale Circuits and Systems (3 units)
ENGR 868 Advanced Control Systems (3 units)
ENGR 869 Robotics (3 units)