CIVIL AND STRUCTURAL/ EARTHQUAKES ENGINEERING SF SCHOLARS ROADMAP

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select One (Major Core):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM 115</td>
<td>General Chemistry I: Essential Concepts of Chemistry</td>
<td>3-5</td>
</tr>
<tr>
<td>CHEM 180</td>
<td>Chemistry for the Energy and the Environment (B1, B3, ES)</td>
<td></td>
</tr>
<tr>
<td>ENG 114</td>
<td>Writing the First Year: Finding Your Voice (A2)</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 100</td>
<td>Introduction to Engineering (Major Core)</td>
<td>1</td>
</tr>
<tr>
<td>ENGR 101</td>
<td>Engineering Graphics (Major Core)</td>
<td>1</td>
</tr>
<tr>
<td>MATH 226</td>
<td>Calculus I (Major Core, B4)</td>
<td>4</td>
</tr>
<tr>
<td>GE Area A: Oral Communication (A1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Units</td>
<td>15-17</td>
</tr>
<tr>
<td>Spring Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGR 271</td>
<td>Introduction to MATLAB (Major Core)</td>
<td>1</td>
</tr>
<tr>
<td>MATH 227</td>
<td>Calculus II (Major Core)</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 220</td>
<td>General Physics with Calculus I and General Physics with Calculus I Laboratory (Major Core, B1, B3)</td>
<td>4</td>
</tr>
<tr>
<td>GE Area D</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>GE Area E</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Units</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Second Year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGR 102</td>
<td>Statics (Major Core)</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 200</td>
<td>Materials of Engineering (Major Core)</td>
<td>3</td>
</tr>
<tr>
<td>MATH 228</td>
<td>Calculus III (Major Core)</td>
<td>4</td>
</tr>
<tr>
<td>GE Area C</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Units</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>Spring Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGR 201</td>
<td>Dynamics (Major Core)</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 205</td>
<td>Electric Circuits (Major Core)</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 235</td>
<td>Surveying (Major Core)</td>
<td>3</td>
</tr>
<tr>
<td>MATH 245</td>
<td>Elementary Differential Equations and Linear Algebra (Major Core)</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 240</td>
<td>General Physics with Calculus III and General Physics with Calculus III Laboratory (Major Core)</td>
<td>4</td>
</tr>
<tr>
<td>GE Area C</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>GE Area D</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Units</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>Third Year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGR 300</td>
<td>Engineering Experimentation (Major Core)</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 304</td>
<td>Mechanics of Fluids (Major Core)</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 309</td>
<td>Mechanics of Solids (Major Core)</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 434</td>
<td>Principles of Environmental Engineering (Major Core)</td>
<td>3</td>
</tr>
<tr>
<td>GE Area C</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>GE Area D</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Units</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>Spring Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGR 302</td>
<td>Experimental Analysis (Major Core)</td>
<td>1</td>
</tr>
<tr>
<td>ENGR 323</td>
<td>Structural Analysis (Major Core)</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 429</td>
<td>Construction Management (Major Core)</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 430</td>
<td>Soil Mechanics (Major Core)</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 436</td>
<td>Transportation Engineering (Major Core)</td>
<td>3</td>
</tr>
</tbody>
</table>

1. Includes Calculus II Laboratory
2. Includes Calculus I Laboratory
3. Includes Engineering Experimentation Laboratory
4. Includes Statics Laboratory
5. Includes Structural Analysis Laboratory

Notes:
- B1, B3, ES: Core courses
- A2: Writing requirement
- GE Area: General Education requirements
<table>
<thead>
<tr>
<th>GE Area B: Life Science (B2)</th>
<th>3</th>
</tr>
</thead>
</table>

Fourth Year

Summer Semester

<table>
<thead>
<tr>
<th>GE Area C</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>GE Area D</td>
<td>3</td>
</tr>
</tbody>
</table>

Units 16

Fall Semester

ENGR 425 Reinforced Concrete Structures (Major Core) 3

ENGR 696 Engineering Design Project I (Major Core) 6

ENGR 800 Engineering Communications (Graduate Core) 3

Major Upper-Division Electives (12 Units Total) - Take Two 7 6

Graduate Electives (12-15 Units) - Take One 8 3

Units 16

Spring Semester

ENGR 697GW Engineering Design Project II - GWAR (Major Core) 2

ENGR 801 Engineering Management (Graduate Core) 3

Major Upper-Division Electives (12 Units Total) - Take Two 7 6

GE Area UD-C: Upper-Division Arts and/or Humanities (Consider SF State Studies Course) 3

GE Area UD-D: Upper-Division Social Sciences (Consider SF State Studies Course) 3

Units 17

Fifth Year

Fall Semester

ENGR 833 Principles of Earthquake Engineering (Graduate Core) 3

Select One (Culminating Experience):

ENGR 897 Research 3

Graduate Elective 8 3

Graduate Electives (12-15 Units) - Take Two 8 6

Units 12

Spring Semester

ENGR 836 Structural Design for Earthquakes (Graduate Core) 3

ENGR 895 or ENGR 898 Applied Research Project (Culminating Experience) or Master’s Thesis 3

Graduate Electives (12-15 Units) - Take One 8 3

<table>
<thead>
<tr>
<th>Units</th>
<th>9</th>
</tr>
</thead>
</table>

Total Units 157-159

1. ENG 114 can only be taken if you complete Directed Self-Placement (DSP) and select ENG 104; if you choose ENG 104/ENG 105 through DSP you will satisfy A2 upon successful completion of ENG 105 in the second semester; multilingual students may be advised into alternative English courses.

2. Depending on courses completed through Early Start, students in Pathway/Category III or IV may be required to enroll in a support course to complement their Quantitative Reasoning/B4 requirement. There are multiple course options for this pathway. Before enrolling in a B4 course, students should verify their MATH Pathway/Category in their Student Center. Information regarding the courses that correspond with your MATH Pathway/Category can be found on the Developmental Studies Office Website.

3. To avoid taking additional units, it is recommended that you meet SF State Studies requirements (AERM, GP, ES, SJ) within your GE.

4. GE Area A: Critical Thinking (A3) is satisfied upon completion of ENGR 205 and either ENGR 201 or ENGR 213.

5. GE Area UD-B: Upper-Division Physical and/or Life Sciences is satisfied upon completion of ENGR 300 and either ENGR 301 or ENGR 302.

6. You must complete 21 units of upper-division Engineering units before registering for ENGR 696.

7. **Major Electives (12 units)**

 - ENGR 303 Engineering Thermodynamics (3 units) (Prerequisite for ENGR 469)
 - ENGR 426 Steel Structures (3 units)
 - ENGR 427 Wood Structures (3 units)
 - ENGR 431 Foundation Engineering (3 units)
 - ENGR 432 Finite Element Methods in Structural and Continuum Mechanics (3 units)
 - ENGR 435 Environmental Engineering Design (3 units)
 - ENGR 439 Construction Engineering (3 units)
 - ENGR 441 Fundamentals of Composite Materials (3 units)
 - ENGR 461 Mechanical and Structural Vibrations (3 units)
 - ENGR 468 Applied Fluid Mechanics and Hydraulics (3 units)
 - ENGR 469 Alternative and Renewable Energy Systems (3 units)
 - ENGR 610 Engineering Cost Analysis (3 units)
 - ENGR 699 Independent Study (1-3 units)
 - ENGR 826 Seismic Hazard Analysis (3 units)
 - ENGR 827 Structural Design for Fire Safety (3 units)
 - ENGR 829 Advanced Topics in Structural Engineering (3 units)
 - ENGR 831 Advanced Concrete Structures (3 units)
 - ENGR 832 Advanced Topics in Seismic Design (3 units)
 - ENGR 833 Principles of Earthquake Engineering (3 units)
 - ENGR 835 Advanced Steel Structures (3 units)
 - ENGR 836 Structural Design for Earthquakes (3 units)
 - ENGR 837 Geotechnical Earthquake Engineering (3 units)
Engineering Electives (6-15 units)
Units selected on advisement from:
- ENGR 425 Reinforced Concrete Structures (3 units)
- ENGR 426 Steel Structures (3 units)
- ENGR 427 Wood Structures (3 units)
- ENGR 431 Foundation Engineering (3 units)
- ENGR 461 Mechanical and Structural Vibrations (3 units)
- ENGR 826 Seismic Hazard Analysis (3 units)
- ENGR 827 Structural Design for Fire Safety (3 units)
- ENGR 828 Seismic Isolation and Energy Dissipation (3 units)
- ENGR 829 Advanced Topics in Structural Engineering (3 units)
- ENGR 831 Advanced Concrete Structures (3 units)
- ENGR 832 Advanced Topics in Seismic Design (3 units)
- ENGR 835 Advanced Steel Structures (3 units)
- ENGR 837 Geotechnical Earthquake Engineering (3 units)
- ENGR 838 Smart Structures Technology (3 units)
A program cannot contain more than 9 units of courses with a course number below 700. Some upper-division Engineering courses may also be used as electives if not used in the undergraduate degree program and approved by the Graduate Coordinator.

Non-Engineering Electives (0-6 units)
Courses, either graduate or upper-division, selected primarily from science, mathematics, social science, or business, upon approval of the Graduate Coordinator.