BACHELOR OF SCIENCE IN CIVIL ENGINEERING

Undergraduate Programs in Engineering

Freshman applicants have completed four years of high school mathematics, one year of high school chemistry, and one year of high school physics. Students are also encouraged to include courses in mechanical drawing and computer programming.

Community college transfers should complete the sequence of mathematics, chemistry, physics, and engineering courses listed in freshman and sophomore years under the "sample sequence of courses," if available at the community college.

The Bachelor of Science in Civil, Computer, Electrical, and Mechanical Engineering require – 127, 128, 129, and 129 semester units, respectively. A minimum of 30 units must be earned in residence at SF State. Of these units, 24 must be upper division courses, and 12 of these upper division units must be in the major. Major requirements, including mathematics, chemistry, and physics prerequisites, comprise - 93 units for civil engineering, 94 for computer engineering, 95 for electrical engineering and 95 units for mechanical engineering. For civil engineering, 50 of the required units are lower division and 43 units are upper division. For mechanical engineering, 51 of the required units are lower division and 44 units are upper division. For electrical engineering, 50 of the required units are lower division and 45 units are upper division. For computer engineering, 49 of the required units are lower division and 45 units are upper division. The remaining 33 units satisfy the balance of the university requirements including communication skills and general education in humanities and social sciences. Students are advised that, except for some general education (GE) courses, all courses which are to be counted toward completion of an engineering degree must be taken for a letter grade; the CR/NC option may not be used in this context.

Civil Engineering

The curriculum provides a broad-based common core of engineering science and the essential civil engineering subjects. The students conclude with 15 units of upper division electives where the primary emphasis is design, practical applications, and computer solutions in selected areas of civil engineering. Graduates of the civil engineering program are expected to have, within a few years of graduation:

• Established themselves as practicing professionals or engaged in graduate study in civil engineering or a related field.
• Become licensed civil engineers or made appropriate progress toward professional registration.

Students must complete 21 units of upper division engineering units before registering for ENGR 696.

Courses are scheduled during the day as well as in the late afternoon and evening. Other information and assistance in selecting courses can be obtained from a major advisor in the School of Engineering, or by calling (415) 338-1174, by email to engrasst@sfsu.edu, or by writing to:

School of Engineering
San Francisco State University
Science Building
1600 Holloway Avenue

San Francisco, CA 94132

General Education Requirements Met in the Engineering Major (All Concentrations)

The requirements below are deemed “met in the major” upon completion of the courses listed (even though the courses and their prerequisites are not approved for GE). This is true whether or not the student completes the major.

• Area A3 (Critical Thinking) is satisfied upon completion of ENGR 205 and one of ENGR 201 or ENGR 213.
• Upper Division General Education, Physical and Life Sciences (UD-B) is satisfied upon completion of ENGR 300 and one of ENGR 301 or ENGR 302.

Civil Engineering (B.S.) – 91 units minimum

Required Courses (79-81 units)

| CHEM 115 | General Chemistry I: Essential Concepts of Chemistry | 3-5 |
| or CHEM 180 | Chemistry for the Energy and the Environment | |
| ENGR 100 | Introduction to Engineering | 1 |
| ENGR 101 | Engineering Graphics | 1 |
| ENGR 102 | Statics | 3 |
| ENGR 103 | Introduction to Computers | 1 |
| ENGR 200 | Materials of Engineering | 3 |
| ENGR 201 | Dynamics | 3 |
| ENGR 205 | Electric Circuits | 3 |
| ENGR 235 | Surveying | 3 |
| ENGR 300 | Engineering Experimentation | 3 |
| ENGR 302 | Experimental Analysis | 1 |
| ENGR 304 | Mechanics of Fluids | 3 |
| ENGR 309 | Mechanics of Solids | 3 |
| ENGR 323 | Structural Analysis | 3 |
| ENGR 425 | Reinforced Concrete Structures | 3 |
| ENGR 429 | Construction Management | 3 |
| ENGR 430 | Soil Mechanics | 3 |
| ENGR 434 | Principles of Environmental Engineering | 3 |
| ENGR 436 | Transportation Engineering | 3 |
| ENGR 696 | Engineering Design Project I | 1 |
| ENGR 697GW | Engineering Design Project II-GWAR | 2 |
| MATH 226 | Calculus I | 4 |
| MATH 227 | Calculus II | 4 |
| MATH 228 | Calculus III | 4 |
| MATH 245 | Elementary Differential Equations and Linear Algebra | 3 |
| PHYS 220 | General Physics with Calculus I & General Physics with Calculus I Laboratory | 4 |
| PHYS 230 | General Physics with Calculus II | 3 |
| PHYS 232 | General Physics with Calculus II Laboratory | 1 |
| PHYS 240 | General Physics with Calculus III | 3 |
| PHYS 242 | General Physics with Calculus III Laboratory | 1 |
Upper Division Engineering Electives (12 units)
Choice of upper division electives must present a clearly identifiable educational objective and ensure that the program requirements in engineering science and design are met by all students. Distribution of credit units among engineering science and design is given in the Advising Guide. A study plan of intended upper division electives must be approved by the student's advisor and the program coordinator prior to the seventh semester of the engineering program.

A total of 12 units from the following list of courses is required, subject to the minimum number of units specified for each group. Students with a GPA of at least 3.0 and the required prerequisites may take graduate courses (numbered 800 and above) with the approval of their advisor or the program coordinator.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR 303</td>
<td>Engineering Thermodynamics</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 421</td>
<td>Structural Engineering Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>ENGR 425</td>
<td>Reinforced Concrete Structures</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 426</td>
<td>Steel Structures</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 427</td>
<td>Wood Structures</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 431</td>
<td>Foundation Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 432</td>
<td>Finite Element Methods in Structural and</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Continuum Mechanics</td>
<td></td>
</tr>
<tr>
<td>ENGR 435</td>
<td>Environmental Engineering Design</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 439</td>
<td>Construction Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 441</td>
<td>Fundamentals of Composite Materials</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 461</td>
<td>Mechanical and Structural Vibrations</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 468</td>
<td>Applied Fluid Mechanics and Hydraulics</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 469</td>
<td>Alternative and Renewable Energy Systems</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 610</td>
<td>Engineering Cost Analysis</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 699</td>
<td>Independent Study</td>
<td>1-3</td>
</tr>
<tr>
<td>ENGR 825</td>
<td>Bridge Engineering and Prestress Reinforced</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Concrete Structures</td>
<td></td>
</tr>
<tr>
<td>ENGR 826</td>
<td>Seismic Hazard Analysis</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 827</td>
<td>Structural Design for Fire Safety</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 829</td>
<td>Advanced Topics in Structural Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 830</td>
<td>Finite Element Methods in Structural Continuum</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Mechanics</td>
<td></td>
</tr>
<tr>
<td>ENGR 831</td>
<td>Advanced Concrete Structures</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 832</td>
<td>Advanced Topics in Seismic Design</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 833</td>
<td>Principles of Earthquake Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 835</td>
<td>Advanced Steel Structures</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 836</td>
<td>Structural Design for Earthquakes</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 837</td>
<td>Geotechnical Earthquake Engineering</td>
<td>3</td>
</tr>
</tbody>
</table>

General Education Requirements

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Course Level</th>
<th>Units</th>
<th>Area Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral Communication</td>
<td>LD</td>
<td>3</td>
<td>A1</td>
</tr>
<tr>
<td>Written English</td>
<td>LD</td>
<td>3</td>
<td>A2</td>
</tr>
<tr>
<td>Communication I</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Critical Thinking</td>
<td>LD</td>
<td>3</td>
<td>A3</td>
</tr>
<tr>
<td>Written English</td>
<td>LD</td>
<td>3</td>
<td>A4</td>
</tr>
<tr>
<td>Communication II</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical Science</td>
<td>LD</td>
<td>3</td>
<td>B1</td>
</tr>
<tr>
<td>Life Science</td>
<td>LD</td>
<td>3</td>
<td>B2</td>
</tr>
</tbody>
</table>

Lab Science                  | LD           | 1     | B3               |
Mathematics/                 |              |       |                  |
Quantitative Reasoning       |              |       |                  |
Arts                       | LD           | 3     | C1               |
Arts or Humanities          |              |       |                  |
Humanities: Literature       | LD           | 3     | C3               |
Social Sciences             | LD           | 3     | D1               |
Social Sciences: US History |              |       |                  |
Social Sciences: US & CA    | LD           | 3     | D2               |
Govermnent                  |              |       |                  |
Lifelong Learning and       |             |       |                  |
Self-Development (LLD)      | LD or UD     | 3     | E                |
Physical and/or             | UD           | 3     | UD-B             |
Life Science                |              |       |                  |
Arts and/or Humanities      | UD           | 3     | UD-C             |
Social Sciences             | UD           | 3     | UD-D             |

SF State Studies

Courses certified as meeting the SF State Studies requirements may be upper or lower division in General Education (GE), in a major or minor, or an elective.

American Ethnic and Racial Minorities (AERM) | LD or UD | 3
Environmental Sustainability (ES)          | LD or UD | 3
Global Perspectives (GP)                   | LD or UD | 3
Social Justice (SJ)                        | LD or UD | 3

Note: LD = Lower Division; UD = Upper Division.

First-Time Student Roadmap (4 Year)
This roadmap opens in a new tab. (bulletin.sfsu.edu/colleges/science-engineering/engineering/bs-civil-engineering/roadmap.html)

General Advising Information for Transfer Students

1. Before transfer, complete as many lower division requirements or electives for this major as possible.
2. The following courses are not required for admission, but are required for graduation. Students are strongly encouraged to complete these units before transfer; doing so will provide more flexibility in course selection after transfer.
   • a course in U.S. History
   • a course in U.S. & California Government
• a 2nd-semester course in written English composition

For information about satisfying the requirements described in (1) and (2) above at a California Community College (CCC), please visit http://www.assist.org. Check any geographically accessible CCCs; sometimes options include more than one college. Use ASSIST to determine:

• Which courses at a CCC satisfy any lower division major requirements for this major, including 2nd-semester composition;

Remedial courses are not transferable and do not apply to the minimum 60 units/90 quarters required for admission.

Additional units for courses that are repeated do not apply to the minimum 60 units required for upper division transfer (for example, if course was not passed on the first attempt, or was taken to earn a better grade).

Before leaving the last California community college of attendance, obtain a summary of completion of lower division General Education units (IGETC or CSU GE Breadth). This is often referred to as a GE certification worksheet. SF State does not require delivery of this certification to Admissions, but students should retain this document for verifying degree progress after transfer.

Credit for Advanced Placement, International Baccalaureate, or College-Level Examination Program courses: AP/IB/CLEP credit is not automatically transferred from the previous institution. Units are transferred only when an official score report is delivered to SF State. Credit is based on the academic year during which exams were taken. Refer to the University Bulletin in effect during the year of AP/IB/CLEP examination(s) for details regarding the award of credit for AP/IB/CLEP.

Students pursuing majors in science, technology, engineering and mathematics (STEM) disciplines often defer 6-9 units of lower division general education in areas C and D until after transfer in order to focus on preparation courses for the major. (This advice does not apply to students pursuing associate degree completion before transfer.)

Transferring from institutions other than CCCs or CSUs

Review SF State’s lower division General Education requirements. Note that, as described below, the four basic skills courses required for admission meet A1, A2, A3, and B4 in the SF State GE pattern. Courses that fulfill the remaining areas of SF State’s lower division GE pattern are available at most two-year and four-year colleges and universities.

Of the four required basic skills courses, a course in critical thinking (GE A3) may not be widely offered outside the CCC and CSU systems. Students should attempt to identify and take an appropriate course no later than the term of application to the CSU. To review more information about the A3 requirement, please visit http://bulletin.sfsu.edu/undergraduate-education/general-education/lower-division/#AAEL.

Identify and complete a 2nd-semester written English composition course before transfer. This is usually the next course after the typical “freshman comp” course, with a focus on writing, reading and critical analytical skills for academic purposes, and developing skills in composing, revising, and the use of rhetorical strategies.