Biology

College of Science and Engineering
Dean: Dr. Carmen Domingo

Department of Biology
Hensill Hall 538
Phone: (415) 338-1548
Website: biology.sfsu.edu

Chair: Laura Burrus
Graduate Coordinator: Diana Chu
Graduate Advisors:
- Cell and Molecular Biology/Microbiology: D. Chu
- Ecology, Evolution, and Conservation Biology: A. Zink
- Marine Biology: Jonathon Stillman
- Physiology and Behavioral Biology: M. Fuse
- Biomedical Science: L. Chen

Program Scope
The Department of Biology provides undergraduate and graduate programs covering the breadth of biology. Coursework ranges from introductory biology to specialized courses in broad disciplines of biology. The department has grouped courses into concentrations to help advise students of appropriate programs of study in various biology disciplines. Each concentration provides a breadth of background in basic biological concepts as well as depth in the specific discipline. Students should consult with an advisor early in their program of study to design an individualized program within the concentration of interest. Lists of advisors are available from the department office and website, biology.sfsu.edu.

Students are responsible for information posted on the department website (biology.sfsu.edu) and in a weekly e-mail bulletin, which declared majors receive, as well as for complying with University, college, and department requirements.

Graduate degree programs provide advanced coursework, seminar experiences, and require a written thesis or research project. The master's degrees provide substantial educational depth and training, giving the student a sound foundation for employment or study in doctoral programs.

Research Facilities
- State-of-the-Art Greenhouse
- Harry D. Thiers Herbarium
- Genomics and Transcription Analysis Center (GTAC)
- Molecular Genetics Laboratory (MGLab), Electron Microscope Facility
- Cell and Molecular Imaging Center (CMIC)
- Estuary and Ocean Science Center (EOS Center)
- Sierra Nevada Field Campus
- Moss Landing Marine Laboratories

Collaborative Programs

Estuary and Ocean Science Center
Opportunities for graduate and undergraduate study in marine sciences are enhanced by specialized aquatic and marine research facilities at the Estuary and Ocean Science Center (EOS Center) on the Romberg Tiburon Campus (RTC). The EOS Center is SF State's marine laboratory on San Francisco Bay, just 11 miles north in Tiburon, CA. The EOS Center supports: flow-through bay water tanks and tables; a research pier and nearby moorings equipped with a variety of environmental sensors for tracking water quality, weather conditions, and underwater sounds; laboratories for elemental analysis and analysis of water samples for nutrients and carbonate chemistry; specialized microscopes for quantifying, identifying, and visualizing plankton; a molecular genetics laboratory; a greenhouse for raising wetland plants; and a well-equipped, 38-foot research vessel (R/V Questuary) and a small boat fleet to support aquatic field research. The center also offers a motorboat operators training course and supports an active scientific diving program for faculty, staff, and students. Faculty and research scientists from a variety of departments in the College of Science and Engineering offer courses and mentored research opportunities in marine and estuarine sciences at the EOS Center and on the main campus. The EOS Center hosts and administers the Masters of Science in Interdisciplinary Marine and Estuarine Sciences (IMES). Additional research and educational opportunities are available through the SF Bay National Estuarine Research Reserve and the Smithsonian Environmental Research Center programs based at the EOS Center. See eoscenter.sfsu.edu for more information.

California Academy of Sciences
The Department of Biology and the California Academy of Sciences (CalAcademy) have instituted a program that builds on the complementary strengths of each institution to address the national and international imperative of training biologists in systematics, ecology, and conservation biology. Curators from CalAcademy who have joined the department as research professors contribute to the teaching program, offer seminars and other courses at CalAcademy and supervise graduate student research. The facilities and collections of the Academy are available for selected students pursuing research in the biological sciences.

Career Outlook
This is an exciting time for graduates with degrees in biology. Breakthroughs in understanding living systems are leading to the development of new career opportunities at a rapid rate. In this regard, the undergraduate degrees can open the door to excellent career opportunities in industry, health care, public agencies, secondary school teaching, academia, and many other areas. Many graduates enter careers in the biotechnology industry, the health professions, and environmental and conservation biology. High-level positions in industry and academia commonly require advanced graduate work. The bachelor of science degrees are designed to give students the training they need to enter doctoral or master's programs in biology and related disciplines. Each year many SF State biology graduates are accepted into doctoral programs across the country. SF State's biology programs also have a strong record of placing students in medical and dental schools.

The San Francisco Bay Area is one of the world's largest centers for the biotechnology industry. The majors in cell and molecular biology and microbiology emphasize the latest cutting-edge technologies to provide students with relevant practical skills. Many companies actively recruit SF State students for positions or internships, and SF State graduates are well represented in many prominent biotechnology companies. Employment opportunities vary from manufacturing to technical research support to biotechnology and pharmaceuticals research management.

Graduates of the M.S. in Biomedical Science program, with advanced interdisciplinary science education, internship experience, and workplace skills training, tend to be employed in biomedical institutes,
biotechnology industries, business corporations, government and non-profit organizations, or continue to other advanced degrees. The long-term career outlook for professional science master's graduates is excellent.

Professor

KATHARYN BOYER (2004), Professor of Biology; B.S. (1988), University of Maryland, College Park; M.S. (1994), San Diego State University; Ph.D. (2002), University of California, Los Angeles.

JENNIFER L. BRECKLER (1986), Professor of Biology; B.A. (1975), University of California, Berkeley; Ph.D. (1980), University of California, Los Angeles.

LAURA W. BURRUS (1996), Professor of Biology; B.S. (1986), College of William and Mary; Ph.D. (1991), University of Wisconsin.

LILY CHEN (1998), Professor of Biomedical Laboratory Science; B.S. (1984), National Taiwan University; M.A. (1988), Ph.D. (1991), State University of New York, Buffalo.

DIANA CHU (2004), Professor of Biology; B.A. (1991), University of California, Berkeley; Ph.D. (1997), University of California, Los Angeles.

SARAH COHEN (2003), Professor of Biology; B.A. (1982), Swarthmore College; Ph.D. (1992), University of Washington.

EDWARD F. CONNOR (1997), Professor of Biology; B.A. (1974), New College; M.S. (1977), Ph.D. (1979), Florida State University.

KAREN CROW-SANCHEZ (2007), Professor of Biology; B.A. (1986), California State University Northridge; M.S. (1995), San Francisco State University; Ph.D. (2003), University of California, Santa Cruz.

DENNIS E. DESJARDIN (1990), Professor of Biology; B.S. (1983), M.A. (1985), San Francisco State University; Ph.D. (1989), University of Tennessee.

CARMEN R. DOMINGO (1997), Professor of Biology; B.S. (1987), University of California, Irvine; Ph.D. (1995), University of California, Berkeley.

MICHAEL A. GOLDMAN (1988), Professor of Biology; B.A. (1976), University of Rochester; Ph.D. (1981), Purdue University.

ZHENG-HUI HE (1997), Professor of Biology; B.S. (1983), Hunan Agricultural University (China); M.S. (1986), South China Agricultural University; Ph.D. (1994), University of Virginia.

GRETCHEN LeBUHN (2000), Professor of Biology; B.A. (1984), Vanderbilt University; M.S. (1991), University of Connecticut; Ph.D. (1998), University of California, Santa Barbara.

LETICIA M. MARQUEZ-MAGANA (1994), Professor of Biology; B.S., M.S. (1986), Stanford University; Ph.D. (1991), University of California, Berkeley.

KARINA J. NIELSEN (2014), Professor of Biology, Director of the Estuary Ocean Science Center; B.S. (1992), Brooklyn College of the City University of New York; Ph.D. (1998), Oregon State University.

V. THOMAS PARKER (1980), Professor of Biology; B.A. (1973), University of Texas; M.A. (1975), Ph.D. (1977), University of California, Santa Barbara.

ROBERT M. RAMIREZ (1992), Professor of Biology; B.S. (1981), University of California, Riverside; Ph.D. (1990), University of California, Davis.

JOSEPH ROMEO (1993), Professor of Biomedical Laboratory Science; B.A. (1975), University of California, Berkeley; Ph.D. (1983), University of California, San Diego.

BARRY SAMUEL ROTHMAN (1986), Professor of Biology; B.S. (1969), Haverford College; Ph.D. (1975), California Institute of Technology.

GREG S. SPICER (1996), Professor of Biology; B.S. (1980), University of Texas at Arlington; M.S. (1986), Texas Tech. University; Ph.D. (1990), University of Chicago.

JONATHON STILLMAN (2005), Professor of Biology; B.S. (1991), University of Minnesota; Ph.D. (1998), Oregon State University.

KIMBERLY TANNER (2004), Professor of Biology; B.A. (1991), Rice University; Ph.D. (1997), University of California, San Francisco.

Associate Professor

JOSEPH CHEN (2006), Associate Professor of Biology; B.S. (1995), Harvey Mudd College; Ph.D. (2001), Harvard University.

JOSÉ R. DE LA TORRE (2008), Associate Professor of Biology; B.A. (1990), University of California, Berkeley; Ph.D. (1998), University of California, San Francisco.

WILFRED DENETCLAW JR. (2000), Associate Professor of Biology; B.S. (1983), Fort Lewis College; Ph.D. (1991), University of California, Berkeley.

MEGUMI FUSE (2000), Associate Professor of Biology; B.S. (1987), University of Toronto; M.S. (1990), York University; Ph.D. (1998), University of Toronto.

CHRISTOPHER MOFFATT (1998), Associate Professor of Biology; B.S. (1989), University of Toronto; M.A. (1991), Ph.D. (1994), Johns Hopkins University; Postdoctoral Fellow, University of Massachusetts.

SALLY PASION (2000), Associate Professor of Biology; B.A. (1981), Harvard University; Ph.D. (1995), University of California, Los Angeles.

BLAKE RIGGS (2009), Associate Professor of Biology; B.A., (1996), University of California, Santa Cruz; M.A.,(2001), Ph.D. (2005), University of California, Santa Cruz.

SCOTT ROY (2011), Associate Professor of Biology; B.A. (1999), Ph.D. (2005), Harvard University.

RAVINDER SEHGAL (2007), Associate Professor of Biology; B.A., B.M. (1988), Oberlin College and Conservatory of Music; Ph.D. (1997), University of California, San Francisco; Postdoctoral Fellow (2001), San Francisco State University; Postdoctoral Fellow (2004), University of California, Davis.

VANCE VREDENBURG (2007), Associate Professor of Biology; B.A. (1992), University of California, Santa Barbara; Ph.D. (2002), University of California, Berkeley.
STEVEN L. WEINSTEIN (1997), Associate Professor of Biology; B.S. (1980), State University of New York, Binghamton; Ph.D. (1992), University of California, San Francisco.

Assistant Professor

IVAN A ANASTASSOV (2018), Assistant Professor of Biology; B.A. (2006), Hunter College, CUNY; M.Phil. (2009), Graduate Center, CUNY; Ph.D. (2013), Graduate Center and Hunter College, CUNY.

YEE-HUNG MARK CHAN (2014), Assistant Professor of Biology; B.A. (2001), Harvard University; Ph.D. (2008), Stanford University.

PLEUNI PENNINGS (2014), Assistant Professor of Biology; M.Sc. (2000), Universiteit van Amsterdam; Ph.D.(2007), Ludwig-Maximilians-Universität München.

KEVIN SIMONIN (2014), Assistant Professor of Biology; B.A. (1998), University of Montana; M.S. (2003), Northern Arizona University; Ph.D. (2009), University of California Berkeley.

ANDREA SWEI (2013), Assistant Professor of Biology; B.A. (2000), University of California, Berkeley.

NICOLE SALAZAR VELMESHEV (2018), Assistant Professor of Biology; B.S. (2008), Florida International University; Ph.D. (2014), University of Miami.

ANDREW ZINK (2007), Assistant Professor of Biology; B.A. (1994), Bowdoin College; Ph.D. (2002), Cornell University.

Adjunct Professor

MICHELLE ALEGRIA-HARTMAN (2004), Adjunct Professor of Biology; B.A. (1982), University of California, Berkeley; B.S. (1985), M.A. (1993), San Francisco State University; Ph.D. (2002), University of California, Davis.

SARAH ALLEN (2004), Adjunct Professor of Biology;

HILARY CLARK (2004), Adjunct Professor of Biology; B.S. (1982), B.S. (1988), San Francisco State University; Ph.D. (1993), University of California, Berkeley.

JANIS DICKINSON (2001), Adjunct Professor of Biology; B.S. (1981), Binghamton University; Ph.D. (1987), Cornell University.

EUGENIO FERRARI (2000), Adjunct Professor of Biology; B.A. (1966), Ginnasio-Liceo "L.A. Muraton" (Italy); Ph.D. (1974), University of Pavia (Italy).

ELIZABETH GRAY (2002), Adjunct Professor of Biology; B.A. (1987), Harvard University; Ph.D. (1994), University of Washington.

JOHN GREENLEAF (2000), Adjunct Professor of Biology; B.S. (1955), University of Illinois; M.A. (1956), New Mexico Highland University; M.S. (1962), Ph.D. (1963), University of Illinois.

DAVID GUTNIK (2004), Adjunct Professor of Biology; B.S. (1961), M.S. (1963), University of California, Davis; Ph.D. (1967), University of Southern California; post doctoral training (1967-69), NIH.

NINA JABLONSKI (1998), Adjunct Professor of Biology; B.A. (1975), Bryn Mawr College; Ph.C. (1978), Ph.D. (1981), University of Washington.

PATRICK KOCIOLEK (2001), Adjunct Professor of Biology; B.S. (1980), St. Mary’s College of Maryland; M.S. (1982), Bowling Green State University; Ph.D. (1988), University of Michigan.

STEVEN LEE (2000), Adjunct Professor of Biology; B.S. (1981), State University of New York, Binghamton; M.S. (1984), New York University; Ph.D. (1990), University of California, Berkeley.

WILLIAM LENARZ (2000), Adjunct Professor of Biology; B.S. (1963), Humboldt State University; M.S. (1965), Ph.D. (1969), University of Washington.

ALAN LEVITON (2001), Adjunct Professor of Biology; B.A. (1949), M.A. (1953), Ph.D. (1960), Stanford University.

DOUGLAS LONG (2001), Adjunct Professor of Biology; B.S. (1988), University of California, Riverside; M.A. (1990), Ph.D. (1994), University of California, Berkeley.

JEROLD LOWENSTEIN (2004), Adjunct Professor of Biology; B.S. (1948), Columbia University; M.D. (1953), Columbia College of Physicians and Surgeons.

MICHAEL McGOWAN (2000), Adjunct Professor of Biology; B.A. (1977), M.A. (1984), San Francisco State University; Ph.D. (1985), University of Miami.

CRISTIAN ORREGO (1993), Adjunct Professor of Biology; B.S. (1965), Indiana University; Ph.D. (1971), Brandeis University.

GORDON PARRY (2000), Adjunct Professor of Biology; B.S. (1972), Ph.D. (1975), University College London, University of London

STEPHEN RALSTON (2004), Adjunct Professor of Biology; B.A. (1971), University of California, Los Angeles; M.S. (1975), University of Hawaii, Honolulu; Ph.D. (1981), University of Washington, Seattle.

BALA RAVIKUMAR (2001), Adjunct Professor of Biology; B.E., M.S. (1983), Indian Institute of Science (India); Ph.D. (1987), University of Michigan.

MARK REYNOLDS (2001), Adjunct Professor of Biology; B.A. (1980), University of Iowa; M.S. (1982), Idaho University; Ph.D. (1990), University of California, Berkeley.

WILL RUSSELL (2004), Adjunct Professor of Biology; B.A. (1986), University of California, Santa Cruz; M.S. (1994), San Jose State University; Ph.D. (1999), University of California, Berkeley.

CAROL TANG (2001), Adjunct Professor of Biology; B.A. (1989), University of California, Berkeley; M.S. (1993), Ph.D. (1996), University of Southern California, Los Angeles.

Research Associate Professor

FRANK CIPRIANO (2000), Research Associate Professor of Biology; B.A. (1979), M.S. (1983), San Jose State University; Ph.D. (1992), University of Arizona.
California Academy of Sciences Research Professor

FRANK ALMEDA (1998), California Academy of Sciences Research Professor, Adjunct Professor of Biology; B.A. (1968), University of South Florida; Ph.D. (1975), Duke University.

THOMAS DANIELS (2001), California Academy of Sciences Research Professor, Adjunct Professor of Biology; B.A. (1975), Duke University; Ph.D. (1980), University of Michigan.

ROBERT DREWES (2001), California Academy of Sciences Research Professor, Adjunct Professor of Biology; B.A. (1969), San Francisco State University; Ph.D. (1981), University of California, Los Angeles.

BRIAN FISHER (2001), California Academy of Sciences Research Professor, Adjunct Professor of Biology; B.A. (1988), University of Iowa; M.S. (1992), University of Utah; Ph.D. (1996), University of California, Davis.

TERRY GOSLINER (2001), California Academy of Sciences Research Professor; Adjunct Professor of Biology; B.A. (1972), University of California, Berkeley; M.S. (1973), University of Hawaii; Ph.D. (1978), University of New Hampshire.

MARGARET GOULD BURKE (2004), California Academy of Sciences Research Professor, Adjunct Professor of Biology; B.A. (1974), Hollins College; Ph.D. (1979), Duke University.

CHARLES GRISWOLD (1998), California Academy of Sciences Research Professor, Adjunct Professor of Biology; B.S. (1972), M.S. (1977), Ph.D. (1983), University of California, Berkeley.

DAVID H. KAVANAUGH (1998), California Academy of Sciences Research Professor, Adjunct Professor of Biology; B.A. (1967), San Jose State University; M.A. (1970), University of Colorado; Ph.D. (1978), University of Alberta (Canada).

JOHN E. MCCOSKER (1986), California Academy of Sciences Research Professor; Adjunct Professor of Biology; B.A. (1967), Occidental College; Ph.D. (1973), Scripps Institution of Oceanography, University of California, San Diego.

PETER ROOPNARINE (2001), California Academy of Sciences Research Professor, Adjunct Professor of Biology; B.S. (1984), Mount Allison University; M.S. (1988), Nova Southeastern University Oceanographic Center; Ph.D. (1993), University of California, Davis.

KIM STEINER (2001), California Academy of Sciences Research Professor, Adjunct Professor of Biology; B.A. (1975), Indiana University; M.S. (1977), Ph.D. (1982), University of California, Davis.

GARY WILLIAMS (2001), California Academy of Sciences Research Professor; Adjunct Professor of Biology; B.A. (1972), University of California, Berkeley; M.A. (1975), San Francisco State University; Ph.D. (1987), University of Cape Town (South Africa).

Estuary and Ocean Science Center Research Professor

WILLIAM COCHLAN (2000), Estuary and Ocean Science Center Research Professor, Adjunct Professor of Biology; B.S. Honors (1978), University of British Columbia; M.S. (1982), Dalhousie University; Ph.D. (1989), University of British Columbia; post-doctoral study (1992), Scripps Institute of Oceanography; (1994), University of Southern California.

RICHARD DUGDALE (2000), Estuary and Ocean Science Center Research Professor, Adjunct Professor of Biology; B.S. (1950), M.S. (1951), Ph.D. (1955), University of Wisconsin.

MATTHEW FERNER (2012), Estuary and Ocean Science Center Research Professor, Adjunct Professor of Biology, Research Director for the San Francisco Bay National Estuarine Research Reserve; B.A. (1993), University of Louisville; M.S. (1996), University of Washington; Ph.D. (2006), Georgia Institute of Technology.

WILLIAM J. KIMMERER (1991), Estuary and Ocean Science Center Research Professor, Adjunct Professor of Biology; B.S. (1967), Purdue University; Ph.D. (1980), University of Hawaii.

MICHAEL VASEY (2014), Estuary and Ocean Science Center Research Professor, Adjunct Professor of Biology, Director of the San Francisco Bay National Estuarine Research Reserve; Ph.D. (2012), University of California, Santa Cruz.

FRANCES WILKERSON (2000), Estuary and Ocean Science Center Research Professor, Adjunct Professor of Biology; B.A. (1977), M.A. (1980), University of Cambridge; Ph.D. (1980), University of Bristol.

Majors

- Bachelor of Arts in Biology, General
- Bachelor of Science in Biology, Concentration in Botany
- Bachelor of Science in Biology, Concentration in Cell and Molecular Biology
- Bachelor of Science in Biology, Concentration in Ecology
- Bachelor of Science in Biology, Concentration in Marine Biology and Limnology
- Bachelor of Science in Biology, Concentration in Microbiology
- Bachelor of Science in Biology, Concentration in Physiology
- Bachelor of Science in Biology, Concentration in Zoology

Minor

- Minor in General Biology

Certificate

- Certificate in Biotechnology

Masters

- Master of Science in Biology, Concentration in Cell and Molecular Biology
- Master of Science in Biology, Concentration in Ecology, Evolution, and Conservation Biology
- Master of Science in Biology, Concentration in Marine Biology
- Master of Science in Biology, Concentration in Microbiology
- Master of Science in Biology, Concentration in Physiology and Behavioral Biology
• Master of Science in Biomedical Science: Concentration in Biotechnology
• Master of Science in Biomedical Science: Concentration in Stem Cell Science

Certificate
• Certificate in Genetic Engineering

BIOL 100 Human Biology (Units: 3)
Prerequisite: Intended for non-Biology majors.
Principles of human biology including body structure and function, reproduction, development, heredity, and evolution. Aspects of modern biology impacting the human species.

Course Attributes:
• E1 LLD Pre-Fall 2019
• B2: Life Science
• Social Justice

BIOL 101 Human Biology Laboratory (Unit: 1)
Prerequisite: BIOL 100.
Laboratory exercises demonstrating scientific processes, including the scientific method, analysis of data, and drawing appropriate conclusions. Extra fee required.

Course Attributes:
• B3: Lab Science

BIOL 150 The World of Plants (Units: 3)
Prerequisite: Intended for non-Biology majors.
World of plants, their place in nature, and their relationship to humans. Growing plants, field observations, and studies of the economic uses of plants. Lecture, 2 units; laboratory, 1 unit. Extra fee required.

Course Attributes:
• B2: Life Science
• B3: Lab Science
• Environmental Sustainability

BIOL 160 Marine Biology (Units: 3)
Introduction to the marine environment including oceanic, intertidal, and nearshore communities of plants, animals, and microbes. An emphasis on marine biological and chemical processes and environmental issues both locally and globally.

Course Attributes:
• B2: Life Science
• Environmental Sustainability

BIOL 170 Animal Diversity (Units: 3)
Prerequisite: Intended for non-Biology majors.
Describes the diversity of animal life and provides an overview of basic concepts of evolution, the fossil record, physiology, behavior, ecology, geographical distribution, and issues in the conservation of biodiversity.

Course Attributes:
• B2: Life Science
• Environmental Sustainability

BIOL 171 Animal Diversity Laboratory (Unit: 1)
Prerequisite: BIOL 170 (may be taken concurrently).
Examination of photographic specimens of animal species, their habitats, and their anatomy. Computer exercises to illustrate evolutionary, ecological, and physiological principles. Extra fee required.

BIOL 176 Science and Politics of Stem Cell Biology (Units: 3)
Prerequisite: Intended for non-Biology majors.
Foundation for understanding concepts in stem cell biology and the social and political issues in stem cell research and regenerative medicine.

Course Attributes:
• B2: Life Science
• Am. Ethnic & Racial Minorities
• Social Justice

BIOL 210 General Microbiology and Public Health (Units: 3)
Prerequisite: Intended for non-Biology majors.
Basic concepts of microbiology including practical applications to medicine, public health, and the environment.

BIOL 211 General Microbiology and Public Health Laboratory (Unit: 1)
Prerequisite: BIOL 210 (may be taken concurrently). Intended for non-Biology majors.
Laboratory techniques in isolation, enumeration, and identification of microorganisms. Laboratory. Extra fee required.

BIOL 212 Principles of Human Physiology (Units: 3)
Prerequisites: CHEM 101 or CHEM 115, BIOL 100 and BIOL 101 or BIOL 210, all with grades of C or better. Intended for non-Biology majors.
Physiology of human organ systems and principles of homeostasis. [Formerly BIOL 610]

BIOL 213 Principles of Human Physiology Laboratory (Unit: 1)
Prerequisite: BIOL 212 (may be taken concurrently).
Laboratory exercises in mammalian physiology. To accompany or follow BIOL 212. Extra lab fee required. [Formerly BIOL 611]

BIOL 220 Principles of Human Anatomy (Units: 4)
Prerequisites: BIOL 100 and BIOL 101 or BIOL 212 and BIOL 213.
Study of the gross anatomy of the human body including body systems involving gross structure and history. Computerized virtual anatomy lab experience supplemented with enhanced skeletal and specimen study and cadaver visits. (Plus-minus letter grade only)

BIOL 230 Introductory Biology I (Units: 5)
Prerequisites: Restricted to Biology and Biochemistry majors and minors, Kinesiology majors, and Environmental Studies: Natural Resources Management and Conservation majors.
Fundamentals of biology including chemical basis of life, cell structure, bioenergetics, plant and animal physiology, and genetics. Lecture, 3 units; laboratory, 2 units. Extra fee required.

BIOL 240 Introductory Biology II (Units: 5)
Prerequisite: BIOL 230 with a grade of C- or better.
Fundamentals of biology including gene expression, development, evolution, ecology, and the diversity of microbes, plants, and animals. Lecture, 3 units; laboratory, 1 unit. Extra fee required.
BIOL 300 Nature Study (Units: 3)
Prerequisites: GE Areas A1, A2, A3, and B4; one college-level biology course; or consent of the instructor. Intended for non-Biology majors.
Explore the identification, structure, adaptation, life history, habits, habitat, economic status, and conservation of common plants and animals. Includes two all-day field trips scheduled on two separate weekends. Lecture, 2 units; laboratory, 1 unit. Extra fee required.
Course Attributes:
• Upper-Division
• UD-B: Physical Life Science
• Environmental Sustainability

BIOL 310 Biology for Today's World (Units: 3)
Prerequisites: GE Areas A1, A2, A3, and B4; one college-level biology course; or consent of the instructor.
Fundamental concepts and processes in genetics, cell biology, evolution, ecology, and biodiversity. Scientific inquiry. Application of concepts to current issues in science and society. Lecture, 2 units; activity, 1 unit.
Course Attributes:
• Upper-Division
• UD-B: Physical Life Science
• Environmental Sustainability

BIOL 313 Principles of Ecology (Units: 3)
Prerequisite: One college-level biology or environmentally-oriented course. Intended for non-Biology majors.
Ecological principles and methods. Introduction to population, community, and ecosystem ecology. Includes trips to various habitats. Lecture, 2 units; laboratory, 1 unit. Extra fee required.
Course Attributes:
• Upper-Division

BIOL 315 Field Methods in Ecology and Evolution (Unit: 1)
Prerequisite for BIOL 715: Graduate standing or consent of the instructor. Prerequisites for BIOL 315: Upper-division standing; BIOL 240 and BIOL 458 with grades of C or better; GPA of 3.0 or higher; or consent of the instructor.
An introduction to sampling and experimental design for environmental biologists. An overview of methods for sampling a variety of organisms in specific habitats. Principles of design, execution, and interpretation of data derived from field experiments will be explored. Data analysis and visualization will be emphasized. (BIOL 315/BIOL 715 is a paired course offering. Students who complete the course at one level may not repeat the course at the other level.)
Course Attributes:
• Upper-Division

BIOL 317 Ecology of California (Units: 3)
Prerequisite: A college-level biology course.
Examines the ecology and natural history of California, and the impact humans have on the environment in perceptual and scientific content. Focus on the principal processes underlying the evolution/diversity of California's terrestrial/aquatic flora/fauna.
Course Attributes:
• Upper-Division

BIOL 318 Our Endangered Planet (Units: 3)
Prerequisites: GE Areas A1, A2, A3, and B4; one college-level biology course; or consent of the instructor. Intended for non-Biology majors.
The effect of humans on the ecology of our environment. Species extinctions, the role of genetics, nature reserves, the biology of small populations, and restoration ecology.
Course Attributes:
• Upper-Division
• E1 LLD Pre-Fall 2019
• UD-B: Physical Life Science
• Am. Ethnic & Racial Minorities
• Environmental Sustainability
• Global Perspectives

BIOL 322 Human Sexuality: Integrative Science (Units: 3)
Prerequisite: BIOL 100 or equivalent; or consent of the instructor.
Presents basic scientific foundations of human sexuality. Explores the symbiotic relationships between biology and society throughout the life cycle. Discusses the challenges associated with human sexuality and the tools for dealing with them.
Course Attributes:
• Upper-Division

BIOL 326 Disease! (Units: 3)
Prerequisites: GE Areas A1, A2, A3, and B4; BIOL 100 or equivalent; or consent of the instructor. Intended for non-Biology majors.
Origin and natural history of selected infectious and non-infectious human diseases including causal agents, mechanisms, and historical impact. Factors involved in the incidence and distribution of disease.
Course Attributes:
• Upper-Division
• UD-B: Physical Life Science
• Global Perspectives
• Social Justice
Biology

San Francisco State University Bulletin 2019-2020

BIOL 327 AIDS: Biology of the Modern Epidemic (Units: 3)
Prerequisites: GE Areas A1, A2, A3, and B4; one college-level Biology course; or consent of the instructor. Intended for both Biology and non-Biology majors.

Modern epidemic of AIDS viewed from biological and social perspectives: virology, epidemiology, the immune system, disease states, diagnosis, treatment, prevention, public health issues, sexuality, the response of the scientific community, and comparison with other historical epidemics.

Course Attributes:
- Upper-Division
- UD-B: Physical Life Science
- Global Perspectives

BIOL 328 Human Anatomy (Units: 4)
Prerequisites: Restricted to Biology, Biochemistry, Chemistry, Clinical Science, and Kinesiology majors with sophomore standing or above; BIOL 230 with a grade of C- or better; or consent of the instructor.

Gross structures of the human body. Lecture, 3 units; laboratory, 1 unit. Extra fee required.

Course Attributes:
- Upper-Division

BIOL 330 Human Sexuality (Units: 3)
Prerequisites: GE Areas A1, A2, A3, and B4; one college-level Biology course; or consent of the instructor. Intended for B.A. in General Biology and non-Biology majors.

Development, structure, function, and dysfunction of reproductive and sexual systems in humans, physiology of sexual response, variations in sexual expression, law, birth control and abortion, sexual health, sexual motivation, love, and sexual values.

Course Attributes:
- Upper-Division
 - E1 LLD Pre-Fall 2019
 - UD-B: Physical Life Science

BIOL 331 Research with Communities (Units: 3)
Prerequisites: Restricted to upper-division standing; BIOL 100 or BIOL 230; and consent of the instructor.

Application of frameworks for understanding and developing strategies to improve community health through culturally-congruent research with communities of color. Didactic activities focused on the major determinants of health disparities including racial/ethnic differences in the biological response to social disadvantage, as well as prevention and treatment of chronic diseases that play a major role in local health disparities. Addressing local disparities through research with communities will comprise CSL activities. Lecture, 2 units; activity, 1 unit. [CSL may be available]

Course Attributes:
- Upper-Division

BIOL 332 Health Disparities in Cancer (Units: 3)
Prerequisite for BIOL 832: Graduate standing or consent of the instructor. Prerequisites for BIOL 332: Restricted to upper-division standing; BIOL 230, BIOL 240, and BIOL 355; GPA of 3.0 or higher; or consent of the instructor.

Major determinants of health disparities in cancer including ethnic differences in biology and prevention and treatment of cancer. Strategies to overcome these disparities through research, health education, outreach, advocacy, and policy changes. (BIOL 832/BIOL 332 is a paired course offering. Students who complete the course at one level may not repeat the course at the other level.)

Course Attributes:
- Upper-Division
 - Am. Ethnic & Racial Minorities
 - Global Perspectives
 - Social Justice

BIOL 337 Evolution (Units: 3)
Prerequisites: BIOL 230, BIOL 240, and BIOL 355. Intended for biology and non-Biology majors.

The principles of evolutionary biology, concentrating on basic population genetic mechanisms and methods of analysis.

Course Attributes:
- Upper-Division

BIOL 344GW Research Skills - GWAR (Units: 3)
Prerequisites: Upper-division standing; GE Area A2; BIOL 230 and BIOL 240; GPA of 3.0 or higher; consent of the instructor.

Practical skills for successfully conducting undergraduate research. Focus on experimental design, critical review of literature, effective oral and written scientific presentation, and development of a research plan. (Plus-minus ABC/NC)

Course Attributes:
- Upper-Division
 - Graduation Writing Assessment

BIOL 349 Bioethics (Units: 3)
Prerequisites: Restricted to upper-division standing; GE Areas A1, A2, A3, and B4; or consent of the instructor.

Human experiments, genetic engineering, in-vitro fertilization, human enhancement, cloning, reproductive technology, animal testing, euthanasia, and assisted dying. Emphasis on respectful and reflective discussion.

Course Attributes:
- Upper-Division
 - UD-B: Physical Life Science
 - Social Justice
BIOL 350 Cell Biology (Units: 3)
Prerequisites: Restricted to upper-division standing; intended for Biology and Biochemistry majors; BIOL 230, BIOL 240, and CHEM 115 with a grade of C- or better.

Cell structure and function, extracellular matrix interactions, signal transduction, and regulatory mechanisms in cell growth and differentiation.
Course Attributes:
• Upper-Division

BIOL 351GW Experiments in Cell and Molecular Biology - GWAR (Units: 4)
Prerequisites: Restricted to Biology and Biochemistry majors; upper-division standing; GE Area A2, BIOL 350 and BIOL 355.

Experiments introducing laboratory techniques including microscopy, cytochemistry, spectrophotometric quantitation of macromolecules, organelle isolation, animal cell culture, gene expression, protein analysis, and recombinant DNA techniques. Lecture, 2 units; laboratory, 2 units. Extra fee required. (Plus-minus ABC/NC)
Course Attributes:
• Upper-Division
• Graduation Writing Assessment

BIOL 355 Genetics (Units: 3)
Prerequisites: Intended for Biology and Biochemistry majors; BIOL 230, BIOL 240, and CHEM 130 or CHEM 233 with grades of C- or better.

Viral, prokaryotic, and eukaryotic genetics. Population, human, and molecular genetics.
Course Attributes:
• Upper-Division

BIOL 356 Honors Genetics (Units: 2)
Prerequisite: BIOL 355 with a grade of B or better. Intended for Biology majors.

Advanced topics, new ideas, unsolved problems, reading of original research, and review of articles in genetics: Mendelian, molecular, and population. (Plus-minus letter grade only)
Course Attributes:
• Upper-Division

BIOL 357 Molecular Genetics (Units: 3)
Prerequisite: BIOL 355 or equivalent with a grade of C- or better. Intended for Biology majors.

Current ideas in molecular biology including the transfer and expression of genetic information, interaction and hybridization of genes, molecular mutagens, and molecular evolution. Ethical questions in molecular genetics.
Course Attributes:
• Upper-Division

BIOL 358 Forensic Genetics: Math Matters (Units: 4)
Prerequisites: Restricted to Biology, Chemistry, Mathematics, and Computer Science majors with sophomore standing or above; BIOL 230 with a grade of C- or better and MATH 199; or consent of the instructor.

Statistical forensic genetics with a focus on social impact. Statistical exploration and analyses in R programming language. Creation of an original scientific research project. Critical analysis of forensics in the media. Completion of a forensic genetics policy proposal project. Lecture, 3 units; laboratory, 1 unit. (Plus-minus letter grade only)
Course Attributes:
• Upper-Division

BIOL 380 Evolutionary Developmental Biology (Units: 3)
Prerequisites: BIOL 355 with a grade of C- or better. BIOL 337 is highly recommended. Intended for Biology majors.

Examine the evolution of animal diversity by evaluating the co-option of developmental mechanisms and comparative embryology from representative taxa spanning ancestral multicellular animals through vertebrates. (Plus-minus letter grade only)
Course Attributes:
• Upper-Division

BIOL 382 Developmental Biology (Units: 3)
Prerequisites for BIOL 782: Graduate standing; BIOL 350 and BIOL 355 or equivalents with grades of C- or better; or consent of the instructor.
Prerequisites for BIOL 382: Upper-division standing; BIOL 350 and BIOL 355 with grades of C- or better; GPA of 3.0 or higher; or consent of the instructor. Intended for Biology and Biochemistry majors.

Early embryonic development including the exploration of the molecular genetic basis for tissue differentiation. Gene regulation, chromatin, sex determination, oncogenesis, aging, and pattern formation. Extra fee required.
(BIOL 782/BIOL 382 is a paired course offering. Students who complete the course at one level may not repeat the course at the other level.)
Course Attributes:
• Upper-Division

BIOL 391 Microscopy and Photomicrography (Units: 2)
Prerequisite: One college-level physics course or consent of the instructor. Intended for upper-division Biology majors.

The use of the microscope with brightfield, darkfield, phase contrast, and fluorescent optics. Principles of photomicrography. Lecture, 1 unit; laboratory, 1 unit. Extra fee required.
Course Attributes:
• Upper-Division

BIOL 401 General Microbiology (Units: 3)
Prerequisites: BIOL 230, BIOL 240 and CHEM 233 with a grade of C- or better. Intended for Biology and Biochemistry majors.

Morphology, physiology, genetics, molecular biology, evolution, and taxonomy of microorganisms. Bacteria and viruses. The importance of microbes in biotechnology, ecology, and public health.
Course Attributes:
• Upper-Division
BIOL 402GW General Microbiology Laboratory - GWAR (Units: 3)
Prerequisites: Restricted to Biology majors; GE Area A2; BIOL 401 (may be taken concurrently).

Laboratory techniques in the isolation, cultivation, and identification of microbes, especially bacteria. Microbial properties including nutrition, gene transfer, enzyme induction, and viral replication. Lecture, 1 unit; laboratory, 2 units. Extra fee required. (Plus-minus ABC/NC)

Course Attributes:
- Upper-Division
- Graduation Writing Assessment

BIOL 411 Environmental Microbiology (Units: 3)
Prerequisites: BIOL 355, BIOL 401, BIOL 402GW, and CHEM 340 or CHEM 349. Intended for Biology majors.

Study of microbes and microbial communities using molecular and genomic approaches. Primary research data includes novel microbial genomes and metagenomes. (Plus-minus letter grade only)

Course Attributes:
- Upper-Division
- Graduation Writing Assessment

BIOL 420 General Virology (Units: 3)
Prerequisites: BIOL 401 and BIOL 402GW with a grade of C- or better; or consent of the instructor. Intended for Biology majors.

Molecular aspects of virus structure, genetics, reproduction, and infection. Virus types include bacterial, animal, and plant. (Plus-minus letter grade only)

Course Attributes:
- Upper-Division

BIOL 425 Emerging Diseases (Units: 3)
Prerequisites: BIOL 230, BIOL 240, BIOL 355 or BIOL 401 or BIOL 350, and CHEM 130.

Biology of the emerging diseases that threaten humans and wildlife. The molecular biology, genetics, epidemiology, ecology, and economic impact of emerging viruses.

Course Attributes:
- Upper-Division

BIOL 430 Medical Microbiology (Units: 3)
Prerequisites: Priority enrollment for graduating senior Biology majors and majors requiring this course; BIOL 401 with a grade of C or better; consent of the instructor.

Principles of infection, immunity, and characterization of medically important microbial agents.

Course Attributes:
- Upper-Division

BIOL 431 Medical Microbiology Laboratory (Units: 2)
Prerequisites: Priority enrollment for B.S. Biology majors; BIOL 401, BIOL 402GW with a grade of C- or better, and BIOL 430 (may be taken concurrently); consent of the instructor.

Basic principles and current standard diagnostic procedures in medical microbiology. Lecture, 1 unit; laboratory, 1 unit. (Plus-minus letter grade only)

Course Attributes:
- Upper-Division

BIOL 435 Immunology (Units: 3)
Prerequisite: BIOL 350 or BIOL 401. Intended for Biology majors.

Course Attributes:
- Upper-Division

BIOL 436 Immunology Laboratory (Units: 2)
Prerequisites: BIOL 402GW or equivalent; concurrent enrollment in BIOL 435.

Laboratory illustrating antibody-antigen interactions, the cellular basis of immune responses, and the applications of immune and serological reactions. Extra fee required.

Course Attributes:
- Upper-Division

BIOL 442 Microbial Physiology (Units: 3)
Prerequisites: BIOL 401, BIOL 402GW with a grade of C- or better, and CHEM 349 or equivalent. Intended for Biology majors.

Function, biosynthesis, structure, and chemistry of cells and viruses. Focus on transport, chemotaxis, and energy metabolism, the regulation of growth rate and growth efficiency, and mechanisms of viral and microbial differentiation.

Course Attributes:
- Upper-Division

BIOL 443 Microbial Physiology Laboratory (Units: 2)
Prerequisite: BIOL 442 (may be taken concurrently). Intended for Biology majors.

Experiments in the physiology and metabolism of protists and bacteria including growth studies, cell fractionation procedures, enzyme preparations and assays, and analyses of cellular molecules. Incorporates analytical instrumentation and statistical techniques. Extra fee required.

Course Attributes:
- Upper-Division
BIOL 446 Microbial Genomics (Units: 4)
Prerequisites: BIOL 401, BIOL 402GW, and BIOL 355; consent of the instructor.
Techniques in comparative microbial genomics including a class project in analyzing and annotating a novel microbial genome. (Plus-minus letter grade only)
Course Attributes:
• Upper-Division

BIOL 453 General Parasitology (Units: 3)
Prerequisites: BIOL 230, BIOL 240, and BIOL 355. Intended for Biology majors.
Biology of animal parasites including parasite structure/function, cellular, immunological, biochemical, and molecular parasitology, and control and prevention. Examination of the impact of parasitic infection on human health, culture, and socio-economic welfare.
Course Attributes:
• Upper-Division

BIOL 454 Parasitology Laboratory (Unit: 1)
Prerequisite: BIOL 453 (may be taken concurrently).
Methods and techniques in the examination, preparation, recognition, and identification of protozoan and metazoan parasites of animal hosts. Human parasites with an orientation toward clinical science. Extra fee required.
Course Attributes:
• Upper-Division

BIOL 458 Biometry (Units: 4)
Prerequisite: One college-level Biology course. Intended for Biology majors.
Biological measurements, experimental design, data analysis, and statistical methods as applied to biological problems and methods of data resolution and presentation. Lecture, 3 units; laboratory, 1 unit. Extra fee required.
Course Attributes:
• Upper-Division

BIOL 460 General Entomology (Units: 4)
Prerequisites: BIOL 230 and BIOL 240; or consent of the instructor. Intended for Biology majors.
The insects and their close relatives including physiology, external and internal structures, life cycles, classification of insects to order, ecology in desert, field, forest, and aquatic habitats, and the economic and medical importance of orders. Lecture, 2 units; laboratory, 2 units. Extra fee required.
Course Attributes:
• Upper-Division

BIOL 461 Insect Taxonomy (Units: 4)
Prerequisites: BIOL 230 and BIOL 240. Intended for Biology majors.
Classification of insects and their close relatives to family and taxonomic categories and procedures. Lecture, 2 units; laboratory, 2 units. Extra fee required.
Course Attributes:
• Upper-Division

BIOL 464 Medical Entomology (Units: 3)
Prerequisites: BIOL 230 and BIOL 240. Intended for Biology majors.
Course Attributes:
• Upper-Division

BIOL 470 Natural History of Vertebrates (Units: 4)
Prerequisites: BIOL 230 and BIOL 240. Intended for Biology majors.
Structure, behavior, and distribution of amphibians, reptiles, birds, and mammals, especially those of Central California. One all-day field trip required. Lecture, 2 units; laboratory, 2 units. Extra fee required.
Course Attributes:
• Upper-Division

BIOL 475GW Herpetology - GWAR (Units: 3)
Prerequisites: GE Area A2; BIOL 230 and BIOL 240; or consent of the instructor. Intended for Biology majors.
Evolution, classification, and distribution of amphibians and reptiles. The ecology and behavior of California species. Lecture, 2 units; laboratory, 1 unit. Extra fee required. (Plus-minus ABC/NC)
Course Attributes:
• Upper-Division

BIOL 478GW Ornithology - GWAR (Units: 4)
Prerequisites: GE Area A2; BIOL 230 and BIOL 240; or consent of the instructor. Intended for Biology majors.
Anatomy, physiology, behavior, distribution, classification, and evolution of birds. Visits to the San Francisco Zoo, private aviaries, and museums. One weekend field trip required. Lecture, 2 units; laboratory, 2 units. Extra fee required. (Plus-minus ABC/NC)
Course Attributes:
• Upper-Division
• Graduation Writing Assessment
BIOL 482 Ecology (Units: 4)
Prerequisites: BIOL 230 and BIOL 240. Intended for Biology majors.
Interrelationships between organisms and their environment studied at the individual, population, community, and ecosystem levels. Field trips to various environments. Lecture, 3 units; laboratory, 1 unit. Extra fee required.
Course Attributes:
- Upper-Division

BIOL 490 Ecology of Infectious Diseases (Units: 4)
Prerequisites: BIOL 230 and BIOL 240 with grades of C- or better.
Examination of ecological and evolutionary processes that govern the transmission of pathogens in animal and plant systems including factors that lead to disease emergence, the impact of diseases on host populations, and theoretical foundations of disease ecology. Lecture, 3 units; activity, 1 unit.
Course Attributes:
- Upper-Division

BIOL 492 Comparative Anatomy of Vertebrates (Units: 4)
Prerequisites: BIOL 230 and BIOL 240. Intended for Biology majors.
Organ systems of selected vertebrate types. Lecture, 2 units; laboratory, 2 units. Extra fee required.
Course Attributes:
- Upper-Division

BIOL 500 Evolution and Diversity of Plants (Units: 4)
Prerequisites: BIOL 230 and BIOL 240.
Comparative biology and phylogeny of the major lineages of plants. Evolution and diversification of vegetative and reproductive structures, life histories, and ecological adaptations. Lecture, 2 units; laboratory, 2 units. Extra fee required.
Course Attributes:
- Upper-Division

BIOL 502 Biology of the Algae (Units: 3)
Prerequisite for BIOL 702: Graduate standing or consent of the instructor. Prerequisites for BIOL 502: Upper-division standing; BIOL 230 and BIOL 240; GPA of 3.0 or higher; or consent of the instructor. Intended for Biology majors.
Collection, preservation, identification, and culturing of marine and freshwater algae. Comparative studies of morphology, life history, and ecology. Field trips. Seminar, 2 units; laboratory, 1 unit. Extra fee required. (BIOL 702/BIOL 502 is a paired course offering. Students who complete the course at one level may not repeat the course at the other level.)
Course Attributes:
- Upper-Division

BIOL 504 Biology of the Fungi (Units: 4)
Prerequisites: BIOL 230 and BIOL 240. Intended for Biology majors.
Groups of fungi including their classification, life cycles, morphology and development, and economic significance. Lecture, 2 units; laboratory, 2 units. Extra fee required.
Course Attributes:
- Upper-Division

BIOL 505 Comparative Anatomy of Vascular Plants (Units: 4)
Prerequisites: BIOL 230 and BIOL 240. Intended for Biology majors.
Plant cells and tissues, their structure, development, and organization into vegetative and reproductive structures. Evolutionary and ecological interpretation of tissues of vascular plants. Lecture, 2 units; laboratory, 2 units. Extra fee required.
Course Attributes:
- Upper-Division

BIOL 508 Plants and Human Affairs (Units: 3)
Prerequisites: BIOL 230 and BIOL 240. Intended for Biology majors.
Plants useful or harmful to humans; origins and history, botanical relationships, chemical constituents that make them economically important, and their roles in literate and preliterate cultures. Lecture, 2 units; laboratory, 1 unit.
Course Attributes:
- Upper-Division

BIOL 514 Plant Taxonomy (Units: 5)
Prerequisite for BIOL 814: Graduate standing or consent of the instructor. Prerequisites for BIOL 514: Upper-division standing; BIOL 230 and BIOL 240; GPA of 3.0 or higher; or consent of the instructor. Intended for Biology majors.
Principles of plant taxonomy including classification systems and phylogenetic relationships within the flowering plants. Practice in identification and collecting. Lecture, 2 units; laboratory, 3 units. (Plus-minus letter grade only)
(BIOL 814/BIOL 514 is a paired course offering. Students who complete the course at one level may not repeat the course at the other level.)
Course Attributes:
- Upper-Division

BIOL 525 Plant Physiology (Units: 3)
Prerequisites: BIOL 230, BIOL 240, and CHEM 130. Intended for Biology majors.
Plant physiology including photosynthesis, water and mineral uptake and distribution, translocation of organic materials. Environmental and internal plant regulatory factors and their effect on growth and metabolism.
Course Attributes:
- Upper-Division
BIOL 526 Plant Molecular Physiology Laboratory (Units: 2)
Prerequisites: Restricted to Biology majors; BIOL 230, BIOL 240, and CHEM 130.

Molecular, physiological, and biochemical understanding of plant growth and development. Focus on plant development, plant-plant and plant-environment interactions, photosynthesis, water balance, mineral nutrition, gene expression, cell imaging, data analyses, and presentations. Extra fee required.
Course Attributes:
• Upper-Division

BIOL 529GW Plant Ecology - GWAR (Units: 4)
Prerequisites: GE Area A2; BIOL 230 and BIOL 240; or consent of the instructor. Intended for Biology majors.

Principles of ecology through the study of plants and plant associations. Ecological concepts, biotic-environmental dynamics and relationships, and levels of ecological integration. Biotic provinces and plant associations in California. Lecture, 2 units; laboratory, 2 units. Extra fee required. (Plus-minus ABC/NC)
Course Attributes:
• Upper-Division
• Graduation Writing Assessment

BIOL 530 Conservation Biology (Units: 3)
Prerequisites: BIOL 230 and BIOL 240; or consent of the instructor. Intended for Biology majors.

Principles of nature conservation, preservation, and management. Theory, laws, and practice of conservation science.
Course Attributes:
• Upper-Division

BIOL 532 Restoration Ecology (Units: 3)
Prerequisites: BIOL 230 and BIOL 240.

Focuses on the restoration of degraded habitats with an emphasis on the application of ecological theory to restoration practice. A variety of habitats will be covered especially those common to the Bay Area.
Course Attributes:
• Upper-Division

BIOL 534 Wetland Ecology (Units: 4)
Prerequisites: BIOL 230, and BIOL 240; or consent of the instructor.

Ecology of a variety of wetland types, biotic and abiotic characteristics and processes, conservation, restoration, and management. Field trips to wetland habitats and participation in field and/or greenhouse experiments. Lecture, 3 units; laboratory, 1 unit. Extra fee required.
Course Attributes:
• Upper-Division

BIOL 550 Plant and Animal Interactions (Units: 4)
Prerequisites: BIOL 230, BIOL 240, and an upper-division ecology course. Intended for Biology majors.

Interactions between animals and plants, including such general topics as herbivory, seed dispersal and predation, mycorrhizae, mimicry, myrmecochory, and the co-evolutionary processes that lead to such interactions. Lecture, 3 units; laboratory, 1 unit. Extra fee required. (Plus-minus letter grade only)
Course Attributes:
• Upper-Division

BIOL 555 Marine Invertebrate Zoology (Units: 4)
Prerequisites: BIOL 230 and BIOL 240. Intended for Biology majors.

Comparative laboratory and field study of local marine invertebrate animals and evolution and functional morphology. Lecture, 2 units; laboratory, 2 units. Extra fee required.
Course Attributes:
• Upper-Division

BIOL 556 Natural History of Marine Invertebrates (Units: 4)
Prerequisites: BIOL 230 and BIOL 240; BIOL 555 recommended.

Investigation of the concept of biodiversity using California coastal communities in local intertidal and nearshore habitats as a field laboratory. Field trips required. Lecture, 2 units; laboratory, 2 units. Extra fee required.
Course Attributes:
• Upper-Division

BIOL 570GW Biology of Fishes - GWAR (Units: 4)
Prerequisites: GE Area A2, BIOL 230, and BIOL 240; or consent of the instructor. Intended for Biology majors.

Morphology, physiology, behavior, ecology, distribution, classification, and evolution of marine and freshwater fishes with a focus on California species. Two-weekend field trips. Lecture, 2 units; laboratory, 2 units. Extra fee required. (Plus-minus ABC/NC)
Course Attributes:
• Upper-Division
• Graduation Writing Assessment

BIOL 572 Colloquium in Ecology, Evolution, and Conservation (Units: 2)
Prerequisite for BIOL 872: Graduate standing.
Prerequisites for BIOL 572: Upper-division standing; GPA of 3.0 or higher; or consent of the instructor.

Presentations of student and faculty research, recent journal articles, and by outside speakers. Student speakers receive graduate seminar credit. May be repeated for a total of 8 units. (BIOL 872/BIOL 572 is a paired course offering. Students who complete the course at one level may not repeat the course at the other level.)
Course Attributes:
• Upper-Division
BIOL 575 Fisheries Biology (Units: 3)
Prerequisite: BIOL 570GW or an ecology course. Intended for Biology majors.

Principles and practices in fish ecology and population dynamics, fishing methods and economics, and fisheries management. Lecture, 2 units; laboratory, 1 unit. Extra fee required.

Course Attributes:
- Upper-Division

BIOL 577 Ecological and Environmental Modeling (Units: 4)
Prerequisites: BIOL 230 and BIOL 240 or a course in ecology, MATH 199; or consent of the instructor. Intended for Biology majors.

Theory and practice of mathematical and computer modeling of organisms, ecosystems, and their environment. Lecture, 3 units; laboratory, 1 unit. (Plus-minus letter grade only)

Course Attributes:
- Upper-Division

BIOL 580 Limnology (Units: 3)
Prerequisites: BIOL 230, BIOL 240, CHEM 215, and CHEM 216; an ecology course is recommended. Intended for Biology majors.

Physical, chemical, and biological characteristics of inland waters. Individual field projects. Field trips conducted during class time. Lecture, 2 units; laboratory, 1 unit. Extra fee required.

Course Attributes:
- Upper-Division

BIOL 582 Biological Oceanography (Units: 4)
Prerequisites: BIOL 230 and BIOL 240. Intended for Biology majors.

Physical characteristics of oceans. The biology of plankton and benthos, emphasizing production and food webs. Identification, sampling, and productivity measurements of marine organisms. Lecture, 3 units; laboratory, 1 unit. Extra fee required.

Course Attributes:
- Upper-Division

BIOL 584 Marine Microbial Ecology Laboratory (Unit: 1)
Prerequisite: CHEM 115.

Laboratory section covers methods of measuring microbial rate processes (growth, nutrient uptake, etc.) and assessment of cell concentration in situ. Study of isolation and culture of microbes. Extra fee required. (Plus-minus letter grade only)

Course Attributes:
- Upper-Division

BIOL 585 Marine Ecology (Units: 3)
Prerequisites: BIOL 230 and BIOL 240. Intended for Biology majors.

Plant and animal relationships in near-shore marine communities and temperate zone communities of the central California coast.

Course Attributes:
- Upper-Division

BIOL 586 Marine Ecology Laboratory (Units: 2)
Prerequisite: BIOL 585 (may be taken concurrently).

Laboratory and fieldwork in marine ecology introducing students to sampling methods, laboratory techniques, data collection, and analysis. Fieldwork in a variety of marine field environments. Includes use of primary literature and oral and written presentations. Extra fee required.

Course Attributes:
- Upper-Division

BIOL 600 Animal Behavior (Units: 3)
Prerequisites: BIOL 230 and BIOL 240.

General introduction to animal behavior. Mechanisms of behavior including development, hormones, neural processes, and cognition. Evolutionary approaches including foraging, habitat selection, communication, sexual selection, mating systems, parental care, and social behavior. Extra fee required. (Plus-minus letter grade only)

Course Attributes:
- Upper-Division

BIOL 607 Conservation and Management of Marine Mammals (Units: 3)
Prerequisites: BIOL 230, BIOL 240, and BIOL 355.

Biology and scientific principles involved in the conservation and management of marine mammals. Current regulations and methodologies are critically reviewed and evaluated. Controversies concerning conservation, ecological balance, and specific governmental constraints in the face of a changing environment will be discussed.

Course Attributes:
- Upper-Division

BIOL 609 Physics in Medicine (Units: 3)
Prerequisites: PHYS 121 and BIOL 230 or equivalents; or consent of the instructor.

Mechanics, thermodynamics, and electricity applied to mechanical properties of tissues, metabolism, membrane transport, control and regulation of physical parameters. Sonography, electromagnetism and quantum physics applied to medical diagnostic technology and imaging.

Course Attributes:
- Upper-Division

BIOL 612 Human Physiology (Units: 3)
Prerequisites: BIOL 230, BIOL 240, CHEM 130, and PHYS 121. Intended for Biology majors.

Integrative mechanisms and control systems in cardiovascular and respiratory physiology. Circulation and the distribution and regulation of body fluids. Digestive systems and metabolism.

Course Attributes:
- Upper-Division
BIOL 613GW Human Physiology Laboratory - GWAR (Units: 3)
Prerequisites: GE Area A2; BIOL 612 or BIOL 630 (may be taken concurrently). Intended for Biology majors.
Experiments in preparation, recording, and analysis of the functioning of human and other vertebrate organ systems and tissues. Lecture, 1 unit; laboratory, 2 units. Extra fee required. (Plus-minus ABC/NC)
Course Attributes:
• Upper-Division
• Graduation Writing Assessment

BIOL 614 Vertebrate Histology (Units: 4)
Prerequisites: BIOL 230 and BIOL 240. Intended for Biology majors.
Microscopic anatomy of tissues and organ systems of vertebrates. Lecture, 2 units; laboratory, 2 units. Extra fee required.
Course Attributes:
• Upper-Division

BIOL 615 Molecular Pathophysiology (Units: 3)
Prerequisites: BIOL 350, BIOL 355, and BIOL 612. Intended for Biology majors.
Globally important diseases caused by genetic errors, environmental factors, or parasites. Each disease is studied at the molecular, cellular, and physiological levels.
Course Attributes:
• Upper-Division

BIOL 616 Cardiorespiratory Physiology (Units: 3)
Prerequisites: BIOL 230, BIOL 240, BIOL 612 or BIOL 630, and PHYS 121; or consent of the instructor. Intended for Biology majors.
The physiology of the cardiovascular and respiratory systems, and their interrelationship. Organ function in health and disease. (Plus-minus letter grade only)
Course Attributes:
• Upper-Division

BIOL 617 Environmental Physiology (Units: 3)
Prerequisite: BIOL 612 or BIOL 630. Intended for Biology majors.
The physiological and biochemical mechanisms underlying adaptation of animals to diverse environments. (Plus-minus letter grade only)
Course Attributes:
• Upper-Division

BIOL 618 Biology of Aging (Units: 3)
Prerequisites: Biology majors and minors; BIOL 212 or BIOL 612, BIOL 350, and BIOL 355.
Biological processes underlying aging. Focus on the molecular mechanisms of aging including specific animal models of aging and age-related changes in the major physiological systems in humans. (Plus-minus letter grade only)
Course Attributes:
• Upper-Division

BIOL 619 Pathophysiology (Units: 3)
Prerequisites: Biology majors and minors; BIOL 212 or BIOL 612.
The processes underlying disease in the major physiological systems. Focus on understanding the relationship between changes at the molecular, cellular and tissue levels and their physiological manifestations at the organ and system levels. (Plus-minus letter grade only)
Course Attributes:
• Upper-Division

BIOL 620 Endocrinology (Units: 3)
Prerequisites: Restricted to Biology majors and Pre-health certificate students; BIOL 230 and BIOL 240.
Course Attributes:
• Upper-Division

BIOL 621 Reproductive Physiology (Units: 3)
Prerequisites: BIOL 230, BIOL 240, BIOL 330, and CHEM 130; BIOL 492 or another course in vertebrate anatomy is recommended. Intended for Biology majors.
Reproductive morphology and physiology of vertebrates.
Course Attributes:
• Upper-Division

BIOL 622 Hormones and Behavior (Units: 3)
Prerequisites: BIOL 230 and BIOL 240; a course in physiology or endocrinology strongly recommended; or consent of the instructor. Intended for Biology majors.
Effects that hormones exert on behavior. Hormonal activation and organization of behavior and the nervous system. Actions of hormones compared in humans and non-human species.
Course Attributes:
• Upper-Division

BIOL 623 Pharmacology (Units: 3)
Prerequisite for BIOL 723: Graduate standing.
Prerequisites for BIOL 623: Upper-division standing; BIOL 230 and BIOL 240 with grades of C- or better, BIOL 612, and CHEM 130; GPA of 3.0 or higher; or consent of the instructor.
Pharmacology principles including pharmacokinetics of drug absorption and elimination. Mechanisms of drug action on the body. Commonly used pharmaceutical drugs. (BIOL 723/Biol 623 is a paired course offering. Students who complete the course at one level may not repeat the course at the other level.)
Course Attributes:
• Upper-Division
BIOL 625 Hematology (Units: 3)
Prerequisite: A college-level physiology course. Intended for Biology majors.
Course Attributes:
 • Upper-Division

BIOL 627 Biophysics (Units: 3)
Prerequisites: BIOL 230, CHEM 115, and PHYS 121 or equivalents; or consent of the instructor.
Physical description of free energies and driving forces, energetic and timescales of biological processes, interactions of biomolecules, diffusion transport and signaling, protein DNA and membrane structure, molecular motors, cooperative binding, membrane potentials and excitability, and regulation of gene expression.
Course Attributes:
 • Upper-Division

BIOL 630 Animal Physiology (Units: 3)
Prerequisites: BIOL 230, BIOL 240, and CHEM 130. Intended for Biology majors.
The physiology of animals including structure, function, and regulation of organ systems. Unifying principles and natural adjustments to stress.
Course Attributes:
 • Upper-Division

BIOL 631GW Animal Physiology Laboratory - GWAR (Units: 4)
Prerequisites: GE Area A2; BIOL 612 or BIOL 630. Intended for Biology majors.
Approaches to scientific research on the environmental physiology of marine and estuarine organisms with a focus on metabolic processes. Emphasis on scientific writing and communication. Lecture, 2 units; laboratory 2 units. Extra fee required. (Plus-minus ABC/NC)
Course Attributes:
 • Upper-Division
 • Graduation Writing Assessment

BIOL 638 Bioinformatics and Genome Annotation (Units: 4)
Prerequisites for BIOL 738: Graduate standing; BIOL 357; or consent of the instructor.
Prerequisites for BIOL 638: Upper-division standing; BIOL 230; GPA of 3.0 or higher; or consent of the instructor.
Analyze and annotate a different chunk of genomic DNA. Results from this course will be incorporated into peer-reviewed publications with students listed as an author. (Plus-minus letter grade only)
(BIOL 738/BIOL 638 is a paired course offering. Students who complete the course at one level may not repeat the course at the other level.)
Course Attributes:
 • Upper-Division

BIOL 640 Cellular Neurosciences (Units: 3)
Prerequisites: BIOL 230, BIOL 240, CHEM 130, and PHYS 121; BIOL 350 and BIOL 612 are recommended. Intended for Biology majors.
Cellular and molecular analysis of neurons. Cellular, synaptic, and retinal neurophysiology. Electrical and chemical mechanisms underlying intraneuronal and inter-neuronal signaling.
Course Attributes:
 • Upper-Division

BIOL 642 Neural Systems Physiology (Units: 3)
Prerequisite: BIOL 328 or BIOL 612.
Communication between neural centers controlling sensory and motor systems, homeostasis, learning, thought, and affect. Connectivity, neurophysiological regulation, and neuropathology. (Plus-minus letter grade only)
Course Attributes:
 • Upper-Division

BIOL 644 LEADerS Service Learning Course: Learners Engaged in Advocating for Diversity in Science (Units: 4)
Prerequisites: Restricted to upper-division standing; BIOL 230, BIOL 240, and BIOL 350 or BIOL 355 or BIOL 357.
Examination of issues involving equity and diversity of scientific teaching with a specific focus on the development of inclusive practices within the upper-division courses in Biology. Students will be involved in developing assessments in their partnerships and either implementing (PALS) or developing (LEADS) active learning exercises. Seminar, 2 units; activity, 2 units. [CSL may be available]
Course Attributes:
 • Upper-Division

BIOL 652 Science Education Partners in Biology (Units: 4)
Prerequisites: BIOL 230 and BIOL 240 or one upper-division Biology course and consent of the instructor.
Introduction to biology teaching and learning; engage in K-12 classroom teaching; examine understanding of biology, discuss science education literature, and analyze biology lessons and student learning. Lecture, 2 units; activity, 2 units. Extra fee required. [CSL may be available]
Course Attributes:
 • Upper-Division

BIOL 654 Peer Assistants for Learning Science (PALS) (Units: 4)
Prerequisites: Restricted to upper-division standing; BIOL 230, BIOL 240, and BIOL 350 or BIOL 355 or BIOL 357.
Intended for Biology majors interested in revisiting and applying their science knowledge, understanding common misconceptions in their discipline, gaining experience in teaching science in the university setting, exploring the field of science teaching as a potential career, and learning science through teaching science. Work with faculty and lecturers who have been trained in scientific teaching and are interested in expanding their capacity for active learning and inclusive teaching practices in their course. Lecture, 2 units; Activity, 2 units. [CSL may be available]
Course Attributes:
 • Upper-Division
BIOL 670GW Ecology and Evolution of Marine Systems I - GWAR (Units: 6)
Prerequisites: GE Area A2; BIOL 240, BIOL 458 or equivalents with grades of C or better; concurrent enrollment in BIOL 671 and BIOL 699 or BIOL 897. Introduces highly motivated students to ecological and evolutionary processes that structure subtidal marine environments from the top down (emphasizing effects of predation). Students conduct independent field research and develop scientific writing skills. Lecture, 4 units; laboratory, 2 units. Extra fee required. (Plus-minus letter grade only)
Course Attributes:
• Upper-Division
• Graduation Writing Assessment

BIOL 671 Ecology and Evolution of Marine Systems II (Units: 6)
Prerequisites: BIOL 240 and BIOL 458 with grades of C or better; concurrent enrollment in BIOL 670GW and BIOL 699 or BIOL 897. Introduction to ecological and evolutionary processes that structure subtidal marine environments from the bottom up (emphasizing foundational habitats). Lecture, 4 units; laboratory, 2 units. Extra fee required. (Plus-minus letter grade only)
Course Attributes:
• Upper-Division
• Environmental Sustainability

BIOL 677 Introduction to Optical Engineering for the Biological Sciences (Units: 3)
Prerequisites: MATH 226; CHEM 215; BIOL 230 with C or better; consent of the instructor. A hands-on introduction to applying advances in low-cost computers and digital cameras to microscope design. Learn the fundamentals of optical engineering and image processing used in digital microscopy. Includes building an inexpensive lensless microscope capable of capturing and processing images of plankton. The completed microscope will be used to conduct a research project. Learn essential skills in optical design, instrumentation, and fabrication. Lecture, 1 unit; laboratory, 2 units. (Plus-minus letter grade; RP grading only)
(This course is offered as BIOL 677 and CHEM 677. Students may not repeat the course under an alternate prefix.)
Course Attributes:
• Upper-Division

BIOL 694 Cooperative Internship in Biology (Units: 2-4)
Prerequisites: Restricted to sophomore standing and above; Biology majors; consent of Biology faculty adviser. Written and oral report of work performed with an outside agency and a requested written report from the agency supervisor. Evaluation of work by a Biology adviser and/or faculty committee. May be repeated for a total of 16 units.
Course Attributes:
• Upper-Division

BIOL 699 Independent Study in Biology (Units: 1-3)
Prerequisites: Restricted to senior Biology majors; consent of the department and instructor. Special study in the laboratory, field, or library under the direction of a member of the department. The student must present a written detailed report of the work accomplished to the staff of the department. May be repeated for credit.
Course Attributes:
• Upper-Division

BIOL 700 Introduction to Research Skills (Units: 3)
Prerequisite: Restricted to graduate standing or consent of the instructor.
Introduction to the theory and practice of skills used by research scientists that include research literature searches, basic concepts in visualizing and interpreting data, analyzing conclusions of research articles, ethics, and safety. Assignments support completion of the degree requirements including forming a thesis committee and defining a research objective. (Plus-minus letter grade only)

BIOL 702 Biology of the Algae (Units: 3)
Prerequisite for BIOL 702: Graduate standing or consent of the instructor. Prerequisites for BIOL 502: Upper-division standing; BIOL 230 and BIOL 240; GPA of 3.0 or higher; or consent of the instructor. Intended for Biology majors. Collection, preservation, identification, and culturing of marine and freshwater algae. Comparative studies of morphology, life history, and ecology. Field trips. Seminar, 2 units; laboratory, 1 unit. Extra fee required. (BIOL 702/BIOL 502 is a paired course offering. Students who complete the course at one level may not repeat the course at the other level.)
Course Attributes:
• Upper-Division

BIOL 708 Scientific Methods for Professional Aquatic Scientists (Units: 3)
Prerequisite: Graduate standing or consent of the instructor. Introduction to research tools and approaches used by scientists including software for data analysis and presentation, using scientific literature, experimental design, writing scientific papers and proposals, professional communication (oral, poster, and letter), and time and stress management. (Plus-minus letter grade only)

BIOL 710 Advanced Biometry (Units: 3)
Prerequisite: BIOL 458.
Use of computers for critical data evaluation and decision-making. Accessing and using available statistical packages, database management, construction of phylogenetic tree models, and advanced statistical analyses. No prior computer experience required. Seminar, 2 units; laboratory, 1 unit. Extra fee required.

BIOL 711 Immunoassays (Units: 3)
Prerequisites: BIOL 435 or equivalent (may be taken concurrently), CHEM 349. Principles and applications of antigen-antibody interactions, immunoassay design, and detection systems. Enzyme, luminescent and fluorescent assays, and their successful application in laboratory medicine or biological research are emphasized.
BIOL 714 Biomedical Enzymology (Units: 3)
Prerequisite: CHEM 349 or equivalent.
Fundamental knowledge of enzymes, cofactors, and enzyme kinetics. Laboratory and computer exercises focus on action and kinetics of enzymes commonly used in medical diagnosis and biotechnology research. Seminar, 2 units; laboratory, 1 unit. Extra fee required. (Plus-minus letter grade only)

BIOL 715 Field Methods in Ecology and Evolution (Unit: 1)
Prerequisite for BIOL 715: Graduate standing or consent of the instructor. Prerequisites for BIOL 315: Upper-division standing; BIOL 240 and BIOL 458 with grades of C or better; GPA of 3.0 or higher; or consent of the instructor.
An introduction to sampling and experimental design for environmental biologists. An overview of methods for sampling a variety of organisms in specific habitats. Principles of design, execution, and interpretation of data derived from field experiments will be explored. Data analysis and visualization will be emphasized. (BIOL 315/BIOL 715 is a paired course offering. Students who complete the course at one level may not repeat the course at the other level.)
Course Attributes:
• Upper-Division

BIOL 716 Skills for Scientific Proposal Writing (Units: 3)
Prerequisites: Graduate standing; consent of the instructor.
Development of technical writing skills through the process of writing and editing research proposals based on the students' own research projects.

BIOL 719 Exploring and Practicing Science Communication (Units: 2)
Prerequisite: Graduate standing or consent of the instructor.
Communicating about science is a natural part of any scientist's life. Delve into what others have learned about science communication, experiment with tools that communicate our work and goals, and develop skills to engage a broad range of people to how our science is relevant and important. (This course is offered as BIOL 719 and SCI 719. Students may not repeat the course under an alternate prefix.)

BIOL 723 Pharmacology (Units: 3)
Prerequisite for BIOL 723: Graduate standing.
Prerequisites for BIOL 623: Upper-division standing; BIOL 230 and BIOL 240 with grades of C- or better; BIOL 612, and CHEM 130; GPA of 3.0 or higher; or consent of the instructor.
Pharmacology principles including pharmacokinetics of drug absorption and elimination. Mechanisms of drug action on the body. Commonly used pharmaceutical drugs. (BIOL 723/BIOL 623 is a paired course offering. Students who complete the course at one level may not repeat the course at the other level.)
Course Attributes:
• Upper-Division

BIOL 732 Biology and Chemistry of Signaling Pathways (Units: 3)
Prerequisite: Graduate standing or consent of the instructor.
An interdisciplinary presentation of the mechanisms by which extracellular stimuli trigger intracellular biochemical reactions that lead to alterations in cellular function. (Plus-minus letter grade)
(This course is offered as BIOL 732 and CHEM 846. Students may not repeat the course under an alternate prefix.)

BIOL 737 Plant Metabolism (Units: 3)
Prerequisite: BIOL 525 or CHEM 340 or CHEM 349. Intended for Biology and Chemistry majors.
Plant metabolism including photosynthesis, cell wall biosynthesis, nitrogen and sulfur metabolism, and secondary plant products. Common metabolic pathways with an emphasis on functioning and regulation of these pathways in plants.

BIOL 738 Bioinformatics and Genome Annotation (Units: 4)
Prerequisites for BIOL 738: Graduate standing; BIOL 357; or consent of the instructor.
Prerequisites for BIOL 638: Upper-division standing; BIOL 230; GPA of 3.0 or higher; or consent of the instructor.
Analyze and annotate a different chunk of genomic DNA. Results from this course will be incorporated into peer-reviewed publications with students listed as an author. (Plus-minus letter grade only)
(BIOL 738/BIOL 638 is a paired course offering. Students who complete the course at one level may not repeat the course at the other level.)
Course Attributes:
• Upper-Division

BIOL 741 Electron Microscopy (Units: 4)
Prerequisite: Graduate or senior standing and consent of the instructor.
Introduction to electron microscopy with a focus on instrumentation, image formation and interpretation, x-ray microanalysis, sample preparation, artifacts, and related techniques. Laboratory work includes operation of the electron microscope, x-ray microanalysis, and the preparation of biological and inorganic specimens for scanning and transmission electron microscopy. Seminar, 2 unit; laboratory, 2 units. Extra fee required. (Plus-minus letter grade only)
(This course is offered as BIOL 741, CHEM 741, and ERTH 741. Students may not repeat the course under an alternate prefix.)

BIOL 743 Cell and Molecular Techniques (Units: 3)
Prerequisites: Graduate standing; BIOL 357 (may be taken concurrently), CHEM 340, and CHEM 341.
Lecture and discussion of modern techniques and design of strategies used in cell and molecular biology research. Includes discussion of societal issues.

BIOL 750 Science Teaching for Scientists I (Units: 2)
Prerequisite: Graduate standing or consent of the instructor.
Introduction to practical teaching strategies, science education theory and research, and scientific teaching to SF State graduate students who are teaching science in a variety of contexts. May be repeated for a total of 4 units. (Plus-minus letter grade only)
(This course is offered as SCI 750 and BIOL 750. Students may not repeat the course under an alternate prefix.)

BIOL 756 Principles of Human Genetics (Units: 3)
Prerequisites: An upper-division genetics course; consent of the instructor. Intended for graduate Biology and Genetic Counseling students.
Inheritance, molecular genetics, cytogenetics, variation, mutation, family history, pedigree analysis, genetic risk calculation, quantitative traits, evolution, and population genetics. (Plus-minus letter grade only)
BIOL 760 Cancer Biology (Units: 3)
Prerequisites: Graduate standing; BIOL 350 or BIOL 401, BIOL 357, CHEM 340 or CHEM 349; or consent of the instructor.

The molecular and cellular basis of cancer. Emphasis on potential therapeutic targets including cell cycle regulators, signal transduction mechanisms, cellular differentiation factors, oncogenes, and tumor suppressors. (Plus-minus letter grade only)

BIOL 763 Molecular Biology of Cancer (Units: 2)
Prerequisites: Graduate standing; a Biochemistry course.

The biology, diagnosis, and treatment of cancer focuses on how recent advances have been achieved by the application of molecular biology principles and techniques. Topics include metastasis, angiogenesis, carcinogenesis, genetics, therapeutics, and potential future advances. (Plus-minus letter grade only)

BIOL 765 Biomedical Immunology Advanced Topics (Units: 2)
Prerequisite: Graduate standing or consent of the instructor.

Faculty direct and evaluate the students' presentations of seminars on selected advanced topics in clinical immunology.

BIOL 772 Molecular Methods in Medical Microbiology (Units: 4)
Prerequisites: Graduate standing; a Biochemistry course and a Microbiology course with laboratories; or consent of the instructor.

Overview of clinically significant microorganisms, emphasizing the functional roles of biological macromolecules in pathogenesis and genetic applications. Lab covers basic principles and current molecular techniques used in model microbes. Lecture, 2 units; laboratory, 2 units. Extra fee required.

BIOL 773 Advances in Biomedical Microbiology: Molecular Microbiology (Units: 2)
Prerequisites: Graduate standing; BIOL 355; or consent of the instructor.

Overview of molecular and genetic approaches that are used to study microbial physiology. May be repeated for a total of 4 units as topics may vary and in consultation with a departmental adviser.

BIOL 774 Nucleic Acid Probe Methods: Biotechnology Applications (Units: 3)
Prerequisite: Graduate Biology students or consent of the instructor.

Basic concepts and applications of modern nucleic acid technologies in diagnosis, therapeutics, and biotechnology. Seminar; 1 unit; laboratory, 2 units. (Plus-minus letter grade only)

BIOL 775 Biomedical Microbiology Advanced Topics (Units: 2)
Prerequisite: Graduate standing or consent of the instructor.

Primary scientific articles on important human microbial diseases and a centenary perspective of scientific discovery in microbiology are emphasized. Students are required to participate in article presentations and discussion.

BIOL 781 Biomedical Virology Foundations (Units: 3)
Prerequisite: Graduate standing or consent of the instructor.

Topic to be specified in Class Schedule. Core lectures with emphasis on virology. May be repeated when topics vary.

BIOL 782 Developmental Biology (Units: 3)
Prerequisites for BIOL 782: Graduate standing; BIOL 350 and BIOL 355 or equivalents with grades of C- or better; or consent of the instructor.
Prerequisites for BIOL 382: Upper-division standing; BIOL 350 and BIOL 355 with grades of C- or better; GPA of 3.0 or higher; or consent of the instructor. Intended for Biology and Biochemistry majors.

Early embryonic development including the exploration of the molecular genetic basis for tissue differentiation. Gene regulation, chromatin, sex determination, oncogenesis, aging, and pattern formation. Extra fee required.
(BIOL 782/BIOL 382 is a paired course offering. Students who complete the course at one level may not repeat the course at the other level.)

Course Attributes:
- Upper-Division

BIOL 784 Biomedical Virology Applications (Units: 3)
Prerequisite: Graduate standing or consent of the instructor.

Topics to be specified in the Class Schedule. Seminar, 1 unit; laboratory, 2 units. May be repeated when topics vary.

BIOL 792 Molecular Virology (Units: 4)
Prerequisite: Graduate standing or consent of the instructor.

Virology laboratory covering the growth and detection of viruses. Techniques include the propagation and titration of viruses in cell culture and the detection of viral infections by immunochemical and nucleic acid-based techniques. Seminar, 2 units; laboratory, 2 units.

BIOL 793 Advances in Biomedical Hematology (Units: 2)
Prerequisite: Graduate standing or consent of the instructor.

Topics to be specified in Class Schedule. May be repeated when topics vary.

BIOL 800 Mushroom Taxonomy (Units: 3)
Prerequisites: Graduate or senior standing; BIOL 504 or equivalent; or consent of the instructor.

Mushroom morphology, microscopic anatomy, and taxonomy including biochemical and cytological aspects and ecology and artificial cultivation of the macroscopic fungi. Seminar, 2 units; laboratory, 1 unit. Extra fee required.

BIOL 801 Population Genetics (Units: 3)
Prerequisite: Restricted to graduate Biology students or consent of the instructor.

The genetic basis of evolution. Effects of mating system, drift, migration, and selection on genetic variation. Quantitative genetics and applications of molecular techniques in evolutionary biology. Seminar, 2 units; laboratory, 1 unit. Extra fee required. (Plus-minus letter grade only)

BIOL 802 Advanced Topics in Biotechnology (Units: 2)
Prerequisites: Restricted to graduate Biology students; consent of the instructor.

Examination of current topics in the biotechnology, pharmaceutical, and clinical research industries. May be repeated when topics vary.
BIOL 830 Advanced Conservation Biology (Units: 3)
Prerequisites: Graduate standing; BIOL 530; or consent of the instructor.
Theory and practice of nature conservation, traditional resource management, and the new theory of the conservation of small populations. Seminar, 2 units; laboratory, 1 unit. Extra fee required. (Plus-minus letter grade only)

BIOL 832 Health Disparities in Cancer (Units: 3)
Prerequisite for BIOL 832: Graduate standing or consent of the instructor.
Prerequisites for BIOL 332: Restricted to upper-division standing; BIOL 230, BIOL 240, and BIOL 355; GPA of 3.0 or higher; or consent of the instructor.
Major determinants of health disparities in cancer including ethnic differences in biology and prevention and treatment of cancer. Strategies to overcome these disparities through research, health education, outreach, advocacy, and policy changes. (BIOL 832/BIOL 332 is a paired course offering. Students who complete the course at one level may not repeat the course at the other level.)

Course Attributes:
• Upper-Division
• Am. Ethnic & Racial Minorities
• Global Perspectives
• Social Justice

BIOL 840 Community Ecology (Units: 3)
Prerequisites: Graduate or senior Biology students; an ecology course.
Modern concepts and approaches to natural community structure, organization, and dynamics. Historical and current theoretical models, forces structuring communities, interactions among communities, and the role of exotic species. (Plus-minus letter grade only)

BIOL 843 Population Biology (Units: 3)
Prerequisites: Graduate or senior Biology students; an ecology course.
Modern concepts of the structure, organization, and evolution of plant and animal populations. Genetical, ecological, evolutionary, and theoretical approaches to the study of populations.

BIOL 848 Behavioral Ecology (Units: 3)
Prerequisite: Graduate standing or consent of the instructor.
Evolution of behavior including optimal foraging, predation, sexual selection, social organization, habitat selection, and communication. (Plus-minus letter grade only)

BIOL 849 Responsible Conduct of Research (Units: 3)
Prerequisite: Restricted to graduate standing or consent of the instructor.
Research integrity, working with human subjects, research with animals, drug testing and clinical trials, data management, reproducibility, peer review, authorship, and conflicts of interest.

BIOL 860 Advances in Biology Education Research (Units: 2)
Prerequisite: Graduate standing or consent of the instructor.
Students read and present primary research articles, facilitate discussions, write article analyses, and develop a mini-grant proposal on a biology education research question. May be repeated for a total of 4 units.
BIOL 861 Advances in Cell and Molecular Biology (Units: 2)
Prerequisite: Graduate standing or consent of the instructor.
Examination of current topics and advances in cell, molecular, and developmental biology. Topics to be specified in the Class Schedule. May be repeated when topics vary.

BIOL 862 Advances in Ecology and Systematic Biology (Units: 2)
Prerequisite: Graduate standing or consent of the instructor.
Topics to be specified in the Class Schedule. May be repeated when topics vary.

BIOL 863 Advances in Marine Biology (Units: 2)
Prerequisite: Graduate standing or consent of the instructor.
Topics to be specified in the Class Schedule. May be repeated when topics vary.

BIOL 864 Advances in Microbiology (Units: 2)
Prerequisites: Graduate standing and consent of the instructor.
Topics to be specified in the Class Schedule. May be repeated when topics vary.

BIOL 865 Advances in Physiology and Behavioral Biology (Units: 2)
Prerequisite: Restricted to graduate Biology students or consent of the instructor.
Topics to be specified in the Class Schedule. May be repeated when topics vary.

BIOL 871 Colloquium in Microbiology, Cell and Molecular Biology (Units: 2)
Prerequisite: Graduate standing or consent of the instructor.
Presentation of student and faculty research, recent journal articles, and presentations by outside speakers. Does not fulfill the graduate seminar requirement. May be repeated for a total of 4 units. (Plus-minus letter grade only)

BIOL 872 Colloquium in Ecology, Evolution, and Conservation (Units: 2)
Prerequisite for BIOL 872: Graduate standing.
Prerequisites for BIOL 572: Upper-division standing; GPA of 3.0 or higher; or consent of the instructor.
Presentations of student and faculty research, recent journal articles, and by outside speakers. Student speakers receive graduate seminar credit. May be repeated for a total of 8 units. (BIOL 872/BIOL 572 is a paired course offering. Students who complete the course at one level may not repeat the course at the other level.)

Course Attributes:
- Upper-Division

BIOL 877 Exploratory Data Analysis for Scientists (Units: 3)
Prerequisite: Restricted to graduate standing.
Work in teams to learn programming and statistics applied to original research projects.

BIOL 881 Seminar: Cell and Molecular Biology (Unit: 1)
Prerequisites: Graduate standing and consent of the instructor.
Topics to be specified in the Class Schedule. May be repeated for a total of 4 units when topics vary.

BIOL 883 Seminar: Marine Biology (Units: 2)
Prerequisite: Graduate standing or consent of the instructor.
Seminar on topics in marine biology. Topics to be specified in the Class Schedule.

BIOL 890 Cooperative Internship (Units: 2-3)
Prerequisite: Graduate standing.
For students who are conducting cooperative internship and work-related research experience. May be repeated for a total of 6 units.

BIOL 891 Biomedical Research Design (Units: 2)
Prerequisites: Must have fulfilled the GET requirement and have a specific research topic approved by a mentor.
Exercises encompass the elements of biomedical laboratory science research proposals including needs assessment, literature review, clinical significance, feasibility, controls, materials and methods, budget, data presentation, human/animal aspects, record keeping, reference notation, and statistical significance. (Plus-minus letter grade only)

BIOL 895 Research Project (Units: 4)
Prerequisites: BIOL 896; consent of the instructor; approval of Advancement to Candidacy (ATC) and Culminating Experience (CE) forms by Graduate Studies before registration.
Supervised independent and original laboratory or field investigation. Guidelines available at the Biology department office. (CR/NC grading only)

BIOL 896 Directed Reading (Unit: 1)
Prerequisites: Approval of the department; permission is required for concurrent enrollment in BIOL 897 or BIOL 895.
Supervised preparation of the research proposal for a research project or thesis research and completion of the preliminary oral examination. May not be repeated. (Plus-minus letter, RP)

BIOL 897 Research (Units: 1-6)
Prerequisites: Undergraduate degree in Biology and graduate standing.
Independent and original laboratory or field investigation under the supervision of a faculty member. May be repeated. (Plus-minus letter grade, CR/NC, RP)

BIOL 898 Master’s Thesis (Units: 4)
Prerequisites: Consent of the instructor; approval of Advancement to Candidacy (ATC) and Culminating Experience (CE) forms by Graduate Studies before registration.
(CR/NC, RP)

BIOL 899 Independent Study (Unit: 1)
Prerequisite: Restricted to graduate Biology students.
Study in the laboratory or library under the direction of a member of the department. May be repeated for a total of 4 units.